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A Different Color Correction Methods
In the main paper, we show that camera pre-calibration using homographic color correction
[14] can effectively improve the cross-camera generalizability of color constancy algorithms.
In fact, there are other effective color correction algorithms commonly discussed in the liter-
ature, including linear, polynomial, and root-polynomial least-squares regression (LLS, PLS
and RPLS) [16, 29]. Here, we are to examine how these different color correction meth-
ods affect the performance of cross-camera color constancy in our evaluation. We test on
the simplified C5 model (defined in Section 4 of the main paper), with Canon 5DSR as the
color correction reference camera. We use the 2nd-order polynomial and root-polynomial
expansions [16] for the PLS and RPLS methods, respectively.

Clearly, in Table A1, we see that homography (homog)—the color correction method
used in the main paper—provides leading performance against other color correction meth-
ods, on average across all three train/test splits. Regarding the result of each train/test split
respectively, we see that all LLS, RPLS and homography pre-calibration can consistently
improve the original C5 method. For PLS, it worsens C5’s results in the 2nd experiment.
We reckon this is because PLS, unlike other three methods, is not exposure invariant [16],
meaning that the color correction efficacy of PLS can be negatively impacted if the exposure
condition under which each image is captured is different from when capturing the training
MCC colors. We point readers to [16] for more details on this issue.
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Method Mean Med Tri B.25 W.25
(1) Train N+S, Test C

C5 [2] 2.87 2.24 2.36 0.88 6.00
C5-simp-PLS 2.43 1.57 1.73 0.45 5.92
C5-simp-LLS 2.19 1.46 1.60 0.42 5.26
C5-simp-RPLS 2.18 1.44 1.60 0.42 5.21
C5-simp-homog (paper) 2.22 1.46 1.62 0.42 5.33

(2) Train C+S, Test N
C5 [2] 2.68 2.06 2.18 0.59 5.86
C5-simp-PLS 2.87 2.09 2.23 0.66 6.45
C5-simp-LLS 2.63 1.61 1.84 0.51 6.52
C5-simp-RPLS 2.59 1.62 1.81 0.51 6.37
C5-simp-homog (paper) 2.52 1.56 1.76 0.47 6.23

Method Mean Med Tri B.25 W.25
(3) Train C+N, Test S

C5 [2] 3.13 2.50 2.60 0.80 6.62
C5-simp-PLS 2.49 1.66 1.84 0.53 5.90
C5-simp-LLS 2.57 1.64 1.86 0.56 6.16
C5-simp-RPLS 2.61 1.64 1.88 0.60 6.25
C5-simp-homog (paper) 2.34 1.48 1.69 0.43 5.73

Average of the three train/test splits
C5 [2] 2.89 2.27 2.38 0.76 6.16
C5-simp-PLS 2.60 1.77 1.93 0.55 6.09
C5-simp-LLS 2.46 1.57 1.77 0.50 5.98
C5-simp-RPLS 2.46 1.57 1.76 0.51 5.94
C5-simp-homog (paper) 2.36 1.50 1.69 0.44 5.76

Table A1: Changing the color correction methods used for the simplified C5 algorithm. The
results of the original C5 algorithm [2] is supplied in the first row of each table for reference.
The best results are shown in bold and underlined. C: Canon 5DSR. N: Nikon D810. S:
Sony IMX135.

B Training Homography Using a Single Reference Light
In the INTEL-TAU dataset [26], images of the Macbeth Color Checker (MCC) [28] under
10 reference lights captured by the three cameras used are provided. Hence, in the main
paper we used all 10 reference illuminations for training (see Section 3.1). Here, we wish to
examine how the performance of the homography-corrected color constancy will vary if we
only use each 1 out of 10 reference illuminations for the homography training. Again, we
evaluate the simplified C5 algorithm with Canon 5DSR as the reference camera.

Method Mean Med Tri B.25 W.25
(1) Train N+S, Test C

C5 [2] 2.87 2.24 2.36 0.88 6.00
C5-simp-homog (SL_Hor) 2.55 1.79 1.93 0.57 5.88
C5-simp-homog (IE_A) 2.46 1.69 1.84 0.53 5.73
C5-simp-homog (SL_A) 2.40 1.60 1.76 0.48 5.72
C5-simp-homog (IE_F12) 2.58 1.85 1.98 0.56 5.93
C5-simp-homog (IE_F11) 2.35 1.60 1.74 0.48 5.56
C5-simp-homog (SL_TL84) 2.25 1.43 1.60 0.43 5.50
C5-simp-homog (SL_CW) 2.60 1.89 2.02 0.69 5.77
C5-simp-homog (IE_D50) 2.45 1.60 1.77 0.49 5.90
C5-simp-homog (IE_D65) 2.31 1.50 1.67 0.43 5.60
C5-simp-homog (SL_D) 2.23 1.42 1.59 0.43 5.40
C5-simp-homog (paper) 2.22 1.46 1.62 0.42 5.33

(2) Train C+S, Test N
C5 [2] 2.68 2.06 2.18 0.59 5.86
C5-simp-homog (SL_Hor) 2.67 1.66 1.88 0.53 6.59
C5-simp-homog (IE_A) 2.89 1.99 2.17 0.60 6.74
C5-simp-homog (SL_A) 2.63 1.66 1.87 0.46 6.50
C5-simp-homog (IE_F12) 2.96 2.12 2.28 0.78 6.63
C5-simp-homog (IE_F11) 2.75 1.81 2.00 0.62 6.51
C5-simp-homog (SL_TL84) 2.57 1.54 1.75 0.44 6.47
C5-simp-homog (SL_CW) 2.67 1.64 1.88 0.49 6.62
C5-simp-homog (IE_D50) 2.74 1.79 2.01 0.70 6.42
C5-simp-homog (IE_D65) 2.61 1.60 1.83 0.48 6.47
C5-simp-homog (SL_D) 2.55 1.60 1.80 0.46 6.32
C5-simp-homog (paper) 2.52 1.56 1.76 0.47 6.23

Method Mean Med Tri B.25 W.25
(3) Train C+N, Test S

C5 [2] 3.13 2.50 2.60 0.80 6.62
C5-simp-homog (SL_Hor) 2.88 2.30 2.40 0.72 6.13
C5-simp-homog (IE_A) 3.14 2.62 2.70 0.83 6.40
C5-simp-homog (SL_A) 2.73 2.03 2.17 0.59 6.13
C5-simp-homog (IE_F12) 2.66 1.91 2.06 0.57 6.06
C5-simp-homog (IE_F11) 2.51 1.62 1.80 0.54 6.02
C5-simp-homog (SL_TL84) 2.47 1.56 1.75 0.54 6.01
C5-simp-homog (SL_CW) 2.41 1.52 1.71 0.44 5.91
C5-simp-homog (IE_D50) 2.61 1.82 1.98 0.57 6.07
C5-simp-homog (IE_D65) 2.35 1.47 1.65 0.50 5.74
C5-simp-homog (SL_D) 2.49 1.55 1.74 0.43 6.22
C5-simp-homog (paper) 2.34 1.48 1.69 0.43 5.73

Average of the three train/test splits
C5 [2] 2.89 2.27 2.38 0.76 6.16
C5-simp-homog (SL_Hor) 2.70 1.92 2.07 0.61 6.20
C5-simp-homog (IE_A) 2.83 2.10 2.24 0.65 6.29
C5-simp-homog (SL_A) 2.59 1.76 1.93 0.51 6.12
C5-simp-homog (IE_F12) 2.73 1.96 2.11 0.64 6.21
C5-simp-homog (IE_F11) 2.54 1.68 1.85 0.55 6.03
C5-simp-homog (SL_TL84) 2.43 1.51 1.70 0.47 5.99
C5-simp-homog (SL_CW) 2.56 1.68 1.87 0.54 6.10
C5-simp-homog (IE_D50) 2.60 1.74 1.92 0.59 6.13
C5-simp-homog (IE_D65) 2.42 1.52 1.72 0.47 5.94
C5-simp-homog (SL_D) 2.42 1.52 1.71 0.44 5.98
C5-simp-homog (paper) 2.36 1.50 1.69 0.44 5.76

Table A2: Using individual reference lights provided in the INTEL-TAU dataset [26] to train
the homographic corrections used for the simplified C5 algorithm. We order the single-
illuminant results based on their CCTs (from low to high). The results of the original C5
algorithm [2] and “C5-simp-homog” in the main paper (where the homographic corrections
were trained using all 10 illuminations combined) are supplied in the first and the last row of
each table, respectively. The best results are shown in bold and underlined. C: Canon 5DSR.
N: Nikon D810. S: Sony IMX135.
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Illuminant CCT (K)
SL_Hor 2330
IE_A 2800
SL_A 2840
IE_F12 2850
IE_F11 3800
SL_TL84 3870
SL_CW 4100
IE_D50 4800
IE_D65 5950
SL_D 6700

Table A3: (Left) The reference illuminants and their corresponding CCTs (Corrected Color
Temperatures) provided in the INTEL-TAU dataset [26]. (Right) The mean angular error
statistics (averaged over the three train/test camera splits) against the CCT of the illuminant
used for the homographic correction training.

The numerical results are shown in Table A2. The CCT (Corrected Color Temperature)
of each reference illuminant [26], and the plot of averaged mean angular errors against the
illuminant CCTs, are provided in Table A3.

Table A2 shows that homographic corrections trained using some illuminations have
better effects on solving cross-camera color constancy than others. We observed a general
trend that higher CCT illuminants perform better than the lower ones, as shown in the right
figure in Table A3. Other factors might also play a role in the performance variation, e.g.,
the spectral power distributions of the illuminant spectra [26].

Still, on average, we see that simplified C5 adopting homographic corrections with
whichever illuminant all performs better than the original C5, though some worst-performing
illuminants occasionally get worse than C5 in individual train/test camera split results. Over-
all, we see that training homographic corrections using all 10 illuminants (as suggested in
the main paper) performs the best compared to using single illuminant and the original C5.

C Same-G-Channel Assumption for Edge Colors
In our Same-G-Channel assumption, we assume that the G-channel image of the target cam-
era is going to be the same or a constant scaling apart from the G-channel image for the
original camera, for all scenes considered. This is referred to the statistical evidence pro-
vided in [20], that most cameras’ G-sensor spectral sensitivities can be described by the first
PCA basis.

Let us examine the effectiveness of this assumption on predicting the edge color chro-
maticities of the target camera. Considering the R/G chromaticities in the edge images (and
using the ∆ symbol to denote the local spatial derivative operation), the Same-G-Channel
assumption claims the following approximation:

∆R2

∆G2
≈

∆( R2
G2

G1)

∆G1
, (1)

where the ratio on the left-hand-side is the target edge chromaticity, and on the right is the
estimated edge color using the original camera’s G-channel value, G1, and the predicted
R2/G2 ratio via homography.
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It is clear that the approximation can be very accurate if (i) G1 is a scaling factor apart
from G2, i.e., G1 ≈ kG2 and (ii) the R2/G2 predicted by the homographic correction is accu-
rate, as shown in the following derivation:

∆( R2
G2

G1)

∆G1
≈

∆
( R2

G2
(kG2)

)
∆(kG2)

=
k∆R2

k∆G2
=

∆R2

∆G2
. (2)

Also note that Equation (2) only holds if the local derivative operation (i.e., the ∆) is linear
to the constant exposure scaling k. This is true for most works in color constancy, including
FFCC [7] and C5 [2].

Next, we wish to examine the effectiveness of the Same-G-Channel assumption in terms
of edge color distributions and edge images. For this test, we need same-scene RGB im-
ages captured by a set of different cameras. This can be efficiently generated from a set of
hyperspectral images and known camera sensitivities [4]. We use images from the ICVL hy-
perspectral database [3] and camera sensitivities from the RIT 28-camera spectral sensitivity
database [20]. And, we train the homographic corrections using 3 reference lights: CIE D65,
D50 and A. We visualize some of the best and the worst edge color predictions from Figure
A1 to A4.

We observe that the edge chromaticities matching results depend mainly on how well
the initial homography mapping performs. In the case of the best results in Figure A1 and
A2, the matching is almost identical (by visually comparing the C2 Edge and C1→C2 Edge
images). As for the worst results in Figure A3 and A4, we can perceive slight differences
especially in the ground-surfaces of the edge images, in which similar color shifts can also
be observed when comparing the color images.

Figure A1: The color (top row) and edge images (bottom row) captured by the original
camera C1, target camera C2, and the C2 images predicted from C1 (C1→C2) and with the
Same-G-Channel assumption. C1: Pentax K-5, C2: Canon 1DMarkIII. The top panel on
the right is the R/G-B/G chromaticity distribution, and the bottom panel is the edge color
(∆R/∆G - ∆B/∆G) distribution.
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Figure A2: The color (top row) and edge images (bottom row) captured by the original
camera C1, target camera C2, and the C2 images predicted from C1 (C1→C2) and with the
Same-G-Channel assumption. C1: Pentax K-5, C2: Canon 1DMarkIII. The top panel on
the right is the R/G-B/G chromaticity distribution, and the bottom panel is the edge color
(∆R/∆G - ∆B/∆G) distribution.

Figure A3: The color (top row) and edge images (bottom row) captured by the original
camera C1, target camera C2, and the C2 images predicted from C1 (C1→C2) and with the
Same-G-Channel assumption. C1: Point Grey Grasshopper 50S5C, C2: Phase One. The top
panel on the right is the R/G-B/G chromaticity distribution, and the bottom panel is the edge
color (∆R/∆G - ∆B/∆G) distribution.
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Figure A4: The color (top row) and edge images (bottom row) captured by the original
camera C1, target camera C2, and the C2 images predicted from C1 (C1→C2) and with the
Same-G-Channel assumption. C1: Point Grey Grasshopper 50S5C, C2: Phase One. The top
panel on the right is the R/G-B/G chromaticity distribution, and the bottom panel is the edge
color (∆R/∆G - ∆B/∆G) distribution.

D Cross-Camera Color Constancy in the Literature

D.1 NUS 8-Camera Database

Leave-the-Testing-Camera-Out Validation. In the literature, there is a collection of vali-
dation methodologies used on the NUS database [11, 12] which stresses the idea of training
the color constancy algorithms without the testing camera’s images. However, the actual im-
ages used for training vary from one work to another. The examples of this type of validation
include the “Leave-One-Out” method in [1, 2] and the “Leave-One-Dataset-Out” method in
[22].

Collectively shown in Table A4, we compare the homographic-corrected FFCC with
these state-of-the-art methods while separating the methods into categories depending on the
training data used. In the first tier we show the results of the statistics-based methods which
do not require a training process (and therefore their results are already cross-camera results).
In the second tier, we have methods that are trained using three external datasets: Cube+ [5],
INTEL-TAU [26] and Gehler-Shi [18], collectively called the data group “A”. The third tier
includes methods that use not only the images in group A, but also images from 7 out of
8 cameras in the NUS dataset (i.e., only excluding the testing camera) for training. The
fourth tier, labeled “Others”, consists of only one method [8] which uses unlabeled images
for training (none of the usual color constancy databases were used). And finally, in the last
tier we show the results of the homographic-corrected FFCC (FFCC-homog) and the original
FFCC methods we re-ran. Here we use only the 7 out of 8 cameras in the NUS dataset for
training. For FFCC-homog, all 5 reference illuminations provided in the NUS dataset are
used, and the testing camera in each of the 8-fold experiments was selected as the reference

Citation
Citation
{Cheng, Prasad, and Brown} 2014

Citation
Citation
{Cheng, Price, Cohen, and Brown} 2015

Citation
Citation
{Afifi and Brown} 2019

Citation
Citation
{Afifi, Barron, LeGendre, Tsai, and Bleibel} 2021

Citation
Citation
{Koskinen, Yang, and K{ä}m{ä}r{ä}inen} 2020

Citation
Citation
{Bani{¢}, Ko{²}{£}evi{¢}, and Lon{£}ari{¢}} 2017

Citation
Citation
{Laakom, Raitoharju, Nikkanen, Iosifidis, and Gabbouj} 2021

Citation
Citation
{Gehler, Rother, Blake, Minka, and Sharp} 2008

Citation
Citation
{Bianco and Cusano} 2019



LIN ET AL.: COLOR CONSTANCY: HOW TO DEAL WITH CAMERA BIAS? 7

Category Method Mean Med. Tri. B.25% W.25%

Statistics-
based

White Patch [9] 9.91 7.44 8.78 1.44 21.27
Gray World [10] 4.59 3.46 3.81 1.16 9.85
Shades-of-Gray [15] 3.67 2.94 3.03 0.99 7.75
LSRS [17] 3.45 2.51 2.70 0.98 7.32
2nd-order Gray Edge [31] 3.36 2.70 2.80 0.89 7.14
1st-order Gray Edge [31] 3.35 2.58 2.76 0.79 7.18
General Gray World [6] 3.20 2.56 2.68 0.85 6.68
Gray Pixel (Edge) [32] 3.15 2.20 - - -
Black-and-White PCA [11] 2.93 2.33 2.42 0.78 6.13
Gray Index [30] 2.91 1.97 2.13 0.56 6.67

A = {Cube+
+ INTEL-TAU
+ Gehler-Shi}

Cross-Dataset FFCC [22] 3.08 2.54 - - -
Cross-Dataset FC4 [22] 2.92 2.34 - - -
FFCC (pixel+edge) [7] 2.87 2.14 2.30 0.71 6.23
C5 [2] 2.54 1.90 2.02 0.61 5.61

A + NUS SIIE [1] 2.05 1.50 - 0.52 4.48
C5 [2] 1.77 1.37 1.46 0.48 3.75

Others Quasi-Unsupervised [8] 3.00 2.25 - - -

NUS only

FFCC (pixel) [7] 3.10 2.41 2.54 0.84 6.54
FFCC-homog (pixel) 2.36 1.68 1.82 0.56 5.32
FFCC (pixel+edge) [7] 2.35 1.74 1.86 0.55 5.19
FFCC-homog (pixel+edge) 1.80 1.30 1.42 0.44 4.01

Table A4: The NUS’s Leave-the-Testing-Camera-Out validation results. The first column
indicates the image database(s) used for training (see more details in text). For each statistics,
the best result is shown in yellow and bold font, and the second best is shown in cyan and
underlined.

camera.
The overall Mean, Median (Med.), Trimean (Tri.), Average of the best 25% (B.25%) and

Average of the worst 25% (W.25%) angular error statistics are calculated across the NUS
database. The statistics-based results are quoted from Qian et al. [30], and the cross-dataset
results are from Afifi et al. [2].

Prior to our proposed FFCC-homog, C5 [2] under the category “A + NUS” performs
the best overall. Nevertheless, this is also a category that uses the most amount of data for
training. Evidently, compared to C5, FFCC-homog with both pixel and edge information
provides on-par performance—superior in the median, trimean and average of the best 25%
statistics—while being a much simpler model and using a small fraction of data (we do not
amend the group-A images to the NUS) for training.

Cross-Camera Validation. By virtue of the large number of cameras involved in the
NUS database, we reckon it is more meaningful to train the FFCC model for each camera at
a time and test the model on the other cameras individually.

For each camera used for training, we firstly tune the appropriate training hyperparam-
eters using the usual per-camera 3-fold cross validation setup. Then, applying these hyper-
parameters, we train an FFCC model on all the images from the training camera. Finally,
we use this same model to test on the images from other cameras, first without the homo-
graphic correction (top of Figure A5) and then with the correction mappings. Here we set
the training camera as the reference camera (bottom of Figure A5), and again, all 5 reference
illuminations in NUS are used to train the homographic corrections.

For both methods, both pixel and edge information is used in FFCC [7]. Note that in both
tables the rows indicate the training cameras while the columns refer to the testing ones. The
mean and median angular errors are shown for each pair of training and testing cameras, and
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Figure A5: The NUS cross-camera validation performance of the original FFCC (top table)
and FFCC with homographic correction (bottom table). Both methods used pixel and edge
color information. The shown numbers are angular errors (unit: degree), and the cell color
indicates the level of error with respect to the color bar given on the right.

the diagonal cells (where the training and testing cameras are the same one) are left blank.
Clearly, the homographic correction process significantly improves FFCC’s performance

in this cross-camera testing, or, we say that the correction stabilizes the cross-camera perfor-
mance of FFCC.

D.2 INTEL-TAU 3-Camera Database
Unlike the diverse cross-camera evaluation protocols used on the NUS database in the prior
works, upon the proposal of the INTEL-TAU database, it already comes with 2 defined
protocols that take the algorithms’ cross-camera performance into account [26].

First, the 10-fold cross-validation protocol (left of Table A5) adopts a non-random sepa-
ration of the database that aims at lowering the correlation between different folds’ images in
terms of factors such as the geographical location where the images were taken, illumination
conditions, and also, of our concern, the cameras used to capture the images. Then, the cam-
era invariance protocol (right of Table A5) is designed with the focus on the cross-camera
performance: a 3-fold validation process is set up, with each of the 3 cameras (Canon 5DSR,
Nikon D810 and Sony IMX135) in turn used for training, validation and testing1. In both
experiments, we test FFCC-homog with each of the 3 cameras used as the reference camera.
All other evaluation results are quoted from Domislović et al [13].

1This evaluation protocol is similar to our proposed one in Section 3.2 in the main paper. However, we reckon
that, with data from two cameras at hand for training and validation, one might more naturally choose to mix them
up (to increase the data variety in training) and presumably use more data for training than validation. Plus, this
protocol does not avoid including same-scene images in both training and testing sets like in our proposed protocol.
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10-fold cross validation
Category Method Mean Med. Tri. B.25% W.25%

Statistics-
based

Gray World [10] 4.9 3.9 4.1 1.0 10.5
White Patch [9] 9.4 9.1 9.2 1.4 17.6
1st-order Gray Edge [31] 5.9 4.0 4.6 1.0 13.8
2nd-order Gray Edge [31] 6.0 3.9 4.8 1.0 14.0
Shades-of-Gray [15] 5.2 3.8 4.3 0.9 11.9
Black-and-White PCA [11] 4.5 3.2 3.5 0.7 10.6
Weighted Gray Edge 6.1 3.7 4.6 0.8 15.1
Gray Pixel [32] 3.2 2.2 2.4 0.6 7.6
Gray Index [30] 3.9 2.3 2.7 0.5 9.8

Shallow-
learning

Color Tiger [5] 4.2 2.6 3.2 1.0 9.9
PCC-Q2 [25] 3.9 2.4 2.8 0.6 9.6
FFCC [7] 2.4 1.6 1.8 0.4? 5.6

Deep-
learning

Quasi-Unsupervised [8] 3.5 2.6 2.8 0.9 7.4
C3AE [23] 3.4 2.7 2.8 0.9 7.0
BoCF [24] 2.4 1.9 2.0 0.7 5.1
FC4 (VGG16) [19] 2.2 1.7 1.8 0.6 4.7
C5 [2] 2.33 1.55 1.71 0.45 5.57
One-net (noise augment) [13] 1.91 1.40 1.50 0.45 4.25

Ours
FFCC-homog (Reference: Canon 5DSR) 2.37 1.58 1.75 0.43 5.71
FFCC-homog (Reference: Nikon D810) 2.52 1.65 1.84 0.44 6.08
FFCC-homog (Reference: Sony IMX135) 2.29 1.50 1.69 0.43 5.49

Camera invariance
Mean Med. Tri. B.25% W.25%

4.7 3.7 4.0 0.9 10.0
7.0 5.4 6.2 1.1 14.6
5.3 4.1 4.5 1.0 11.7
5.1 3.8 4.2 1.0 11.3
4.0 2.9 3.2 0.7 9.0
4.6 3.4 3.7 0.7 10.3
6.0 4.2 4.8 0.9 14.2
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -

3.4 2.5 2.7 0.8 7.2
3.4 2.7 2.8 0.9 7.0
2.9 2.4 2.5 0.9 6.1
2.6 2.0 2.2 0.7 5.5?

2.45 1.82 1.95 0.53 5.46
2.1 1.6 1.7 0.5? 4.7
2.59 1.77 1.93 0.58 6.05
2.77 1.88 2.08 0.61 6.46
2.57 1.73 1.90 0.55 6.06

Table A5: The INTEL-TAU’s 10-fold cross validation (left table) and camera invariance
(right table) testing results [26]. For each statistics, the best result is shown in yellow and
bold font, and the second best is shown in cyan and underlined. The superscript “?” mark
is used for some best results to indicate the lack of precision for determining the detailed
ranking.

Evidently, FFCC-homog provides top performances in both benchmarks—second to the
One-net method but better than most of the other deep-learning methods. Here, let us dis-
cuss on the difference between our method and the One-net method in more details. While
in FFCC-homog the cross-camera bias is explicitly corrected using a homography mapping,
in contrast, One-net adopted a noise-augmentation process which means to apply random
Gaussian noises to the ground-truth white points of the original training data—with a stan-
dard deviation tuned to the specific cross-camera occasion—which effectively covers the
cross-camera shifts of the ground-truth white points [13].

This result is consistent with the main paper’s conclusion: single-camera algorithms,
such as FC4, CLCC and One-net, can occasionally perform better than cross-camera algo-
rithms like C5 and SIIE (and FFCC-homog where cross-camera bias is pre-corrected). This
is likely because of the robust data augmentation applicable to these single-camera meth-
ods, as addressed in the One-net publication [13]. This said, with data augmentation, we are
at risk of not covering the bias introduced by some corner-case cameras. Advantageously,
under the same circumstance, our homographic cross-camera correction method will only
require the very-fast retraining of the 3× 3 homographic mapping using the MCC chart,
without the need for retraining and re-tuning the color constancy backbone.

E Per-Camera Statistics of the Main Paper Results

In main paper’s result table (Table 1), we show the averaged results across three train/test
camera splits specified in Section 3.2. Here, in Table A6, we show the individual error
statistics for each of these train/test splits. Clearly, in accordance to the main paper’s results
(which are shown in the 4th table), we see that for all testing cameras, all algorithms (except
for CLCC in Experiment (2)) are improved using homographic correction. We note that it
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is possible that the homographic-corrected data in effect lower the variation in training data
which causes the CLCC algorithm to overfit (which can potentially be fixed by adjusting
CLCC’s regularization hyperparameters).

Method Mean Med Tri B.25 W.25
(1) Train: N+S, Test: C

White Patch [9] 11.88 13.70 12.40 1.65 20.73
Shades-of-Gray [15] 6.41 4.37 5.15 1.09 14.84
Gray-World [10] 4.60 3.62 3.90 0.89 9.96
Black-and-White PCA [11] 4.75 3.20 3.54 0.75 11.55
Bright Pixels [21] 4.47 3.11 3.40 0.75 10.51
2nd-order Gray Edge [31] 4.06 3.28 3.45 1.04 8.44
1st-order Gray Edge [31] 4.08 3.21 3.41 0.92 8.77
Gray Index [30] 4.03 2.57 2.89 0.54 10.02
FFCC [7] 4.10 3.57 3.61 0.91 8.43
FFCC-homog 2.30 1.58 1.72 0.51 5.34
FC4 [19] 1.96 1.33 1.45 0.44 4.58
FC4-homog 1.87 1.25 1.38 0.41 4.41
CLCC [27] 1.72 1.23 1.33 0.40 3.88
CLCC-homog 1.81 1.22 1.34 0.40 4.22
SIIE [1] 5.45 4.68 4.87 3.19 8.99
SIIE-homog 2.70 1.86 2.05 0.56 6.30
SIIE-simp-homog 2.75 1.90 2.09 0.59 6.37
C5 [2] 2.87 2.24 2.36 0.88 6.00
C5-homog 2.09 1.39 1.54 0.42 4.96
C5-simp-homog 2.22 1.46 1.62 0.42 5.33

Method Mean Med Tri B.25 W.25
(3) Train: C+N, Test: S

White Patch [9] 9.04 9.14 8.90 1.34 16.46
Shades-of-Gray [15] 5.35 4.26 4.55 0.93 11.53
Gray-World [10] 4.72 3.79 4.04 0.97 10.00
Black-and-White PCA [11] 4.58 3.41 3.71 0.74 10.34
Bright Pixels [21] 4.50 3.33 3.64 0.73 10.18
2nd-order Gray Edge [31] 4.19 3.46 3.61 1.01 8.65
1st-order Gray Edge [31] 4.13 3.29 3.48 0.93 8.77
Gray Index [30] 4.09 2.50 2.97 0.53 10.10
FFCC [7] 2.99 2.34 2.43 0.68 6.48
FFCC-homog 2.60 1.67 1.87 0.50 6.34
FC4 [19] 2.43 1.44 1.60 0.45 6.22
FC4-homog 2.20 1.38 1.55 0.43 5.39
CLCC [27] 2.20 1.59 1.69 0.50 5.00
CLCC-homog 1.96 1.29 1.42 0.39 4.69
SIIE [1] 4.45 3.81 3.94 1.41 8.55
SIIE-homog 3.12 2.09 2.38 0.57 7.32
SIIE-simp-homog 3.10 2.10 2.37 0.54 7.31
C5 [2] 3.13 2.50 2.60 0.80 6.62
C5-homog 2.21 1.41 1.59 0.43 5.36
C5-simp-homog 2.34 1.48 1.69 0.43 5.73

(2) Train: C+S, Test: N
White Patch [9] 10.06 10.38 9.76 1.61 18.65
Shades-of-Gray [15] 5.43 4.09 4.54 0.99 11.96
Gray-World [10] 5.35 4.22 4.50 1.06 11.59
Black-and-White PCA [11] 4.19 2.88 3.25 0.71 9.92
Bright Pixels [21] 4.26 2.95 3.32 0.72 10.05
2nd-order Gray Edge [31] 4.31 3.47 3.65 1.11 9.00
1st-order Gray Edge [31] 4.26 3.24 3.50 0.98 9.26
Gray Index [30] 3.88 2.08 2.58 0.49 10.19
FFCC [7] 3.17 2.35 2.47 0.63 7.21
FFCC-homog 2.65 1.68 1.91 0.43 6.55
FC4 [19] 2.17 1.46 1.61 0.46 5.13
FC4-homog 2.15 1.49 1.63 0.49 4.98
CLCC [27] 1.99 1.38 1.50 0.44 4.59
CLCC-homog 2.05 1.38 1.50 0.44 4.86
SIIE [1] 4.33 3.91 3.94 1.27 8.20
SIIE-homog 3.23 1.90 2.25 0.53 8.11
SIIE-simp-homog 3.19 1.91 2.25 0.52 8.00
C5 [2] 2.68 2.06 2.18 0.59 5.86
C5-homog 2.34 1.40 1.61 0.41 5.89
C5-simp-homog 2.52 1.56 1.76 0.47 6.23

Average of the three train/test splits (main paper results)
White Patch [9] 10.33 11.07 10.35 1.53 18.61
Shades-of-Gray [15] 5.73 4.24 4.75 1.00 12.78
Gray-World [10] 4.89 3.88 4.15 0.97 10.52
Black-and-White PCA [11] 4.51 3.16 3.50 0.73 10.60
Bright Pixels [21] 4.41 3.13 3.45 0.73 10.25
2nd-order Gray Edge [31] 4.19 3.40 3.57 1.05 8.70
1st-order Gray Edge [31] 4.16 3.25 3.46 0.94 8.93
Gray Index [30] 4.00 2.38 2.81 0.52 10.10
FFCC [7] 3.42 2.75 2.84 0.74 7.37
FFCC-homog 2.52 1.64 1.83 0.48 6.08
FC4 [19] 2.19 1.41 1.55 0.45 5.31
FC4-homog 2.07 1.37 1.52 0.44 4.93
CLCC [27] 1.97 1.40 1.51 0.45 4.49
CLCC-homog 1.94 1.30 1.42 0.41 4.59
SIIE [1] 4.74 4.13 4.25 1.96 8.58
SIIE-homog 3.02 1.95 2.23 0.55 7.24
SIIE-simp-homog 3.01 1.97 2.24 0.55 7.23
C5 [2] 2.89 2.27 2.38 0.76 6.16
C5-homog 2.21 1.40 1.58 0.42 5.40
C5-simp-homog 2.36 1.50 1.69 0.44 5.76

Table A6: The per-testing-camera cross-camera results on the INTEL-TAU dataset. The
homographic-corrected and homographic-corrected-simplified methods are marked in blue
and pink, respectively. The best results are shown in bold and underlined.

F Changing Reference Cameras for Homography
In the main paper, all homographic pre-corrections are trained using Canon 5DSR in INTEL-
TAU as the reference camera, i.e., all other training/testing camera colors are first trans-
formed to the colors of Canon 5DSR before feeding to color constancy algorithms for train-
ing or inference. Here, we compare homographic corrections used on FFCC [7] and C5 [2]
when a different reference camera—Nikon D810 or Sony IMX135—is selected.

From the results shown in Table A7, we see that though slight variation exists, both FFCC
and C5 are improved using homographic corrections—whichever the reference camera is.
We also see that the best-performing reference camera is not fixed: it changes for different
train/test camera splits and for different algorithms.
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Method Mean Med Tri B.25 W.25
(1) Train N+S, Test C

FFCC [7] 4.10 3.57 3.61 0.91 8.43
C5 [2] 2.87 2.24 2.36 0.88 6.00
FFCC-homog (Canon∗) 2.30 1.58 1.72 0.51 5.34
FFCC-homog (Nikon) 2.53 1.79 1.95 0.52 5.77
FFCC-homog (Sony) 2.34 1.65 1.78 0.52 5.43
C5-homog (Canon∗) 2.09 1.39 1.54 0.42 4.96
C5-homog (Nikon) 2.13 1.39 1.53 0.39 5.17
C5-homog (Sony) 2.16 1.44 1.59 0.42 5.17
C5-simp-homog (Canon∗) 2.22 1.46 1.62 0.42 5.33
C5-simp-homog (Nikon) 2.18 1.43 1.59 0.42 5.26
C5-simp-homog (Sony) 2.22 1.47 1.63 0.44 5.30

(2) Train C+S, Test N
FFCC [7] 3.17 2.35 2.47 0.63 7.21
C5 [2] 2.68 2.06 2.18 0.59 5.86
FFCC-homog (Canon∗) 2.65 1.68 1.91 0.43 6.55
FFCC-homog (Nikon) 2.79 1.76 1.99 0.48 6.85
FFCC-homog (Sony) 2.58 1.65 1.86 0.47 6.33
C5-homog (Canon∗) 2.34 1.40 1.61 0.41 5.89
C5-homog (Nikon) 2.33 1.40 1.60 0.40 5.88
C5-homog (Sony) 2.48 1.55 1.76 0.48 6.11
C5-simp-homog (Canon∗) 2.52 1.56 1.76 0.47 6.23
C5-simp-homog (Nikon) 2.52 1.56 1.76 0.46 6.25
C5-simp-homog (Sony) 2.60 1.62 1.84 0.49 6.42

Method Mean Med Tri B.25 W.25
(3) Train C+N, Test S

FFCC [7] 2.99 2.34 2.43 0.68 6.48
C5 [2] 3.13 2.50 2.60 0.80 6.62
FFCC-homog (Canon∗) 2.60 1.67 1.87 0.50 6.34
FFCC-homog (Nikon) 2.63 1.67 1.87 0.52 6.40
FFCC-homog (Sony) 2.49 1.65 1.81 0.50 5.94
C5-homog (Canon∗) 2.21 1.41 1.59 0.43 5.36
C5-homog (Nikon) 2.25 1.39 1.59 0.41 5.57
C5-homog (Sony) 2.29 1.42 1.64 0.44 5.59
C5-simp-homog (Canon∗) 2.34 1.48 1.69 0.43 5.73
C5-simp-homog (Nikon) 2.33 1.48 1.68 0.43 5.67
C5-simp-homog (Sony) 2.36 1.49 1.70 0.46 5.74

Average of the three train/test splits
FFCC [7] 3.42 2.75 2.84 0.74 7.37
C5 [2] 2.89 2.27 2.38 0.76 6.16
FFCC-homog (Canon∗) 2.52 1.64 1.83 0.48 6.08
FFCC-homog (Nikon) 2.65 1.74 1.94 0.51 6.34
FFCC-homog (Sony) 2.47 1.65 1.82 0.50 5.90
C5-homog (Canon∗) 2.21 1.40 1.58 0.42 5.40
C5-homog (Nikon) 2.24 1.39 1.57 0.40 5.54
C5-homog (Sony) 2.31 1.47 1.66 0.45 5.62
C5-simp-homog (Canon∗) 2.36 1.50 1.69 0.44 5.76
C5-simp-homog (Nikon) 2.34 1.49 1.68 0.44 5.73
C5-simp-homog (Sony) 2.39 1.53 1.72 0.46 5.82

Table A7: Changing the reference camera used for training the homographic corrections
tested on FFCC [7], C5 [2], and simplified C5 algorithms. The results of the original FFCC
and C5 algorithms are supplied in the first two rows of each table. For the same color
constancy algorithm, the best results among different reference camera used are shown in
bold and underlined. The reference camera adopted in the main paper is marked with ∗.
C/Canon: Canon 5DSR. N/Nikon: Nikon D810. S/Sony: Sony IMX135.
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