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This appendix aims to provide a comprehensive understanding of the key concepts dis-
cussed in the main paper. In Section 1, we exhibit the drawbacks associated with existing
asynchronous methods for constructing and computing with Event-Graphs (EGs) Section 2
expands on the limitations of the Feed Forward Task Head and its impact on performance.
Further experiments focusing on the temporal aspects of EGs and the utilization of GRU are
presented in Sections 3 and 4, respectively. Lastly, in Section 5, we offer additional details
regarding the lightweight CNN baselines proposed in this study.

1 Asynchronous Event-based Graph Neural Networks
Algorithm 1 explains the method used in [2] to construct Event Graph (EG) and compute
Event Graph Neural Network (EGNN) asynchronously using a Fully-Spherical update (as
opposed to the Hemi-Spherical update [1] described in the main paper). When a new event
arrives, its direct neighborhood, i.e. all nodes within the defined radii, has to be processed
for potential update. Indeed, due to future-to-past connections in fully-spherical update,
this new event can share data to an already existing node, updating its adjacency table and
features.

This difference in connectivity is shown in Fig. 1, depicting the state of the EG after all
of the events have been received. The top row represents edges the considered node will take
data from, or input edges, i.e. the result of the search algorithm. Bottom row represents all
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Figure 1: Edges created around a node. Blue and red dots represent negative and positive
events respectively. Green and red edges represent past-to-future and future-to-past edges
respectively. (a) and (b) (resp. (c) and (d)) represent input (resp. output) edges to the
considered node. (a) and (c) use Hemi-Spherical search [1]. (b) and (d) use Fully-Spherical
Search.
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Algorithm 1 Sparse Fully-Spherical update.
Input: New event ev= (x,y, t, p), Event Graph G = (V,E), radii rxy and rt , L layers EGNN,
Task Head
Output: Updated Event Graph, Features, Outputs

Add ev to the vertices V
for Event evi within radii from ev do

Update E for event evi with KNN ▷ ev can replace vertex previously in KNN
end for
G has been updated

for Layer in EGNN of index i do
for Event ev j within i hops of ev in G do

Update Features for ev j at layer i
end for

end for
Features have been updated

for Event evi within L hops of ev in G do
if Features of evi have been updated then

Compute new Output for evi with Task Head
end if

end for
Outputs have been updated
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Figure 2: Illustration of vanishing features in EGNN. A feature is computed at the node
circled in red. For a 5 layers EGNN, its data vanishes in 5 times the temporal search radius
(left) or with gaps in the graph (right). Color intensity indicates at which layer of the EGNN
the feature can be perceived, the lighter the further.

of the edges it will share data to, or output edges, i.e. the result of the search algorithm for
other nodes in the vicinity that include the considered node.

Green and red edges are past-to-future and future-to-past edges respectively. At the
time the event arrived, adding this new node to the EG creates at least the red output edges
(bottom) and requires an update of the impacted nodes. Some of these can be removed later
due to new events being closer to the receiving nodes, inducing further updates. Input edges
(top) to this new node are at this point the green input edges. Later arrival of close events
create the red input edges, inducing updates for the considered node.

Moreover, this reasoning can be extended past this single neighborhood search. Indeed,
as a new event arrives, it has the potential to change the output features of the first layers of
the EGNN for all existing nodes within its direct neighborhood. Then, these nodes are effec-
tively sharing new features at the input of the second EGNN layer. Thus, the computation
for the nodes in their adjacency table have to be updated for layer 2. This ensemble of nodes
can be defined as second degree neighbor from the new event, i.e. that can be reached with
2 hops in the graph (passing from one vertex to another through an edge).

Extending this to a N-layer EGNN, all nodes within N hops from the new event will
have to update some of its features. This means that node features become update free and
can be computed safely only after N times the temporal search radius, guarantying it cannot
be reached in N hops. Therefore, using Fully-Spherical search to create an EG induces
additional computation (as new events can update past results) and adds N times the temporal
search radius in latency. With our 5-layer EGNN and 100 ms temporal search radius, this
corresponds to 500 ms and prohibits the use of such solutions for real time applications.

2 Vanishing features in EGNN

In our evaluation of different task heads for integration with the EGNN feature extractor,
we found that the Feed Forward Task Head (FFTH) performed poorly compared to GRU-
based task heads. The limitation of FFTH lies in its ability to compute output scores only
on a per-node basis, relying on the EGNN feature extractor to capture temporal information.
However, EGNN inherently struggles to analyze patterns over extended periods due to the
vanishing nature of its computed features, as depicted in Figure 2.

As explained in Section 1, an event can only influence features of nodes in N hops from
itself at the Nth layer of the EGNN. This is the first source of vanishing features in the EG. We
used 100 ms time search radius, meaning for our 5-layer EGNN that inputs features cannot
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Neighbor Search Search radii Search Volume Latency Acc
Fully-spherical (10 pix, 50 ms) V 250 ms 68.3 %
Fully-spherical (10 pix, 100 ms) 2V 500 ms 68.0 %
HUG (10 pix, 100 ms) V 0 ms 69.4%
HUG (10 pix, 200 ms) 2V 0 ms 68.1 %
HUG (10 pix, 400 ms) 4V 0 ms 67.3 %

Table 1: Comparison of EG building parameters. Hemi-spherical Update Graph (HUG) [1]
vs Fully-Spherical Update. GRU is processed at 75 Hz. Latency represents the time between
creation and output feature computation for an event.

be kept more than 500 ms in the EG. Most samples are longer than that and early features
are not kept until the end. Features can also vanish due to gaps in the EG, i.e. periods of time
greater than temporal search radius with no event that prohibit edge creation. Therefore,
EGNN must be combined with a recurrent task head in order to correctly analyze patterns
over a longer period of time.

3 Time search radius
We chose to exhibit results for search radii of 10 pixels and 100 ms, searching in the past
only. This represents a search volume V . For a fair comparison, the fully-spherical search
was performed using half the time search radius, 50 ms. Doing so, we obtained the same
search radius V .

Table 1 shows additional results for graph building with different time search radius.
Extending the volume past current values do not increase the accuracy.

4 GRU rate
Table 2 depicts accuracy for DVS-Lip at different GRU rates. 75 Hz achieves the best accu-
racy, in line with conv-based topologies in [3]. Higher rates induce additional computation
while performing worse. Although performance degradation with rate is not as important
as in conv-based topologies [3]. While CNN feature extractor follow the same rate, EGNN
inference is independant of said rate. Thus, GRU rate can be changed without affecting fea-
ture extraction. Conv-based approaches have a hard limit on rates: setting rates too high will
result in poor performance as there is not enough activity for the CNN feature extractor to
grasp patterns [3].

5 CNN-based topologies
CNN-based topologies all use ReLU activation function. Batch Normalization layers are
also added after each convolutional layer. These layers’s parameters are fused into previous
layer’s weight and bias at inference time and thus do not add computational cost at inference
time. The Instance Normalization layer did not bring further gains combined with existing
Batch Normalization layers and was removed from the Task Heads for conv-based features
extractors.

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022



6 T. MESQUIDA ET AL: G2N2 - SUPPLEMENTARY MATERIALS

GRU rate Acc
30 Hz 66.1 %
75 Hz 69.4 %
90 Hz 66.8 %
120 Hz 67.4 %
150 Hz 67.3 %
180 Hz 68.0 %

Table 2: Comparison of GRU rate. Maskout parameters are adapted so the maximum dura-
tion stays the same.
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