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Motivation

• Active Learning is a technique to decide which samples 
should be labeled.

• Selecting the most valuable data for labeling is important 
for most perception techniques, especially for real-world 
tasks.

Pool scenario. Pool-based scenario. Stream-batch scenario.

• Current approaches are focused on pool-based
scenarios, which is challenging for mobile applications.

• Most datasets used for benchmarking were designed for a 
different purpose and do not contain temporal data 
streams.

• Stream-based active learning does not require all data to be 
on a data center.

• Active learning should be evaluated on (sensor) data stream 
directly.

• We propose Temporal Predicted Loss (TPL) a novel active 
learning technique which exploits temporal coherence to 
increase the diversity of uncertainty-based selections.

• Our TPL demonstrated a gain of 2.5 percent points less
required data while being significantly faster than pool-
based methods.

Temporal Predicted Loss

Evaluation in a stream-based setting

• Diversity-based and learning-
based approaches are unsuitable 
for stream-based AL.

• We leverage the temporal
information in uncertainty to 
improve uncertainty-based 
methods.

• Based on temporal structures, we 
exploit the change of uncertainty 
(by predicted loss) over time 
and select samples based on the 
highest change - Temporal 
Predicted loss (TPL).

• TPL increases the diversity of the 
batch selection, while avoiding 
expensive diversity calculations.

Loss Learning

CoreSet

TPL

• We evaluate TPL against other state-of-the-art methods on 
the introduced AD2Ds and GTAVs as well as A2D2 datasets, 
which comprise of several temporal coherent recordings.

• TPL and stream-batch settings are a suitable alternative for 
pool-based active learning.

• Leveraging an additional advantage in data logistics 
enabling large scale active learning.

• TPL, outperforming other state-of-the-art 
methods, is applicable for mobile 
application by avoiding diversity 
estimations.

Conclusion

Method Loss 
learn.

TPL Entropy ALED BatchBald Badge CoreSet CoreGCN

Time [s] 4.5 4.6 6.3 427.2 835.2 49.7 32.7 49.7

Evaluation in a pool-based setting

• TPL achieves the highest accuracy and intersects the fully 
trained networks line as first method.

• TPL outperforms other pool-based methods with the 
stream-batch scenario.

• TPL achieves the second fastest selection time.
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