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A The A2D2 Streets Dataset
We created a scene classification dataset for an operational domain detection task. This task
is essential for autonomous vehicles as it reflects whether they can operate safely in this
environment. For example, construction sites are a domain where more caution is required.
For the dataset, we used the image data of the A2D2 [5] which provides temporally coherent
frames structured in different drives. We assigned the classification labels urban, highway,
country road and construction site to the images describing the current driving environment.
The dataset contains several recorded drives in southern Germany, with around 680 frames
on average per recording. The frames are timestamped with a high frequency of up to 10 Hz
so that the temporal change of the samples can be evaluated meaningfully. Although the rate
is not constant due to sensor synchronization, the optical flow remains stable and does not
get lost. The temporal coherence with a high frequency of sampled images brings the risk
of selecting redundant samples in a batch. Due to the nature of the drives, the latent space
representation is naturally clustered in the specific drives shown in Figure 2.

(a) Construction site (b) Country road (c) Highway (d) Urban

Figure 1: Overview of the different classes in the A2D2 streets dataset.

The recorded drives are not split and divided as a whole recording into an initial labeled
pool and unlabeled pool for training as well as validation and test set as shown in Table 1. In
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Assignment Sessions

initial labeled 20181107_132730 20181108_091945
20181107_133258 20181108_084007 20180807_145028

unlabeled pool 20180810_142822 20180925_135056 20181008_095521
20181107_132300 20181204_154421 20181204_170238

validation set 20180925_101535 20181016_125231 20181204_135952
test set 20180925_124435 20181108_123750 20181108_103155

Table 1: This table shows the dataset split into internal labeled and unlabeled pool training
set as well as validation and test set for A2D2s.

the stream-based setups, the unlabeled drives are fed as streams into the AL algorithm. The
images have been resized to 120×72 pixels. The training dataset has been shuffled.

125 100 75 50 25 0 25 50 75

75

50

25

0

25

50

75
Drive 0
Drive 1
Drive 2
Drive 3
Drive 4
Drive 5
Drive 6
Drive 7
Drive 8
Drive 9
Drive 10

Figure 2: t-SNE analysis with perplexity 30 of the different recorded drives from the training
set in A2D2s.

B The GTA V Streets Dataset
We created the GTA V streets dataset 1 as the first classification dataset designed for active
learning, having temporal coherence. Like the A2D2 streets dataset, we designed an opera-
tion domain detection task for our dataset and added the labels for highway, urban, country
road and gravel road. However, the dataset was recorded from a game, not the real world
like A2D2, so the environment is more manageable and potential variables like weather can
be avoided.

Figure 3 shows examples of the different classes. The dataset contains seven recordings
with dedicated routes that do not intersect each other to avoid overlaps between the training,
validation and test split. Figure 4 shows a map of the different routes. All routes are recorded
during the day hours and similar weather conditions. Additionally, we designed the routes
such that all classes are present in each route. However, the share of classes in each route
varies. By sampling the routes at 10Hz, the dataset contains around 35000 frames. Each

1https://www.cs.cit.tum.de/daml/tpl/

https://www.cs.cit.tum.de/daml/tpl/
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(a) Gravel Road (b) Country road (c) Highway (d) Urban

Figure 3: Overview of the different classes in the GTAV streets dataset.

Assignment Sessions

initial labeled pool Route6
unlabeled pool Route2, Route4, Route5, Route7
validation set Route1
test set Route3

Table 2: This table shows the dataset split into internal labeled and unlabeled pool training
set as well as validation and test set for GTAVs.

frame has a size of 128 × 72 pixels. The dataset is split into an initial labeled pool, an
unlabeled pool, and a validation and test set for the experiments. The exact split is shown in
Table 2.

C Experiment Details
In this section, we highlight our experiment details and hyperparameters. As the datasets are
highly redundant due to the recording character, we applied early stopping on the validation
accuracy, setting the parameter for patience to 30. We followed the official implementations
of Resnet18 [6] and VGG11 [9] provided by PyTorch [7], except for minor modifications.
For Resnet18, we added two fully connected layers with dropout layers between them to
the head. For VGG11, we reduced the hidden layer size to 1024 and 512. Additionally, the
convolutional layers were initialized using the pre-trained ImageNet [4] weights provided
by PyTorch. For the ResNet18 model, we attached the loss learning modules after each of
the four blocks. In the case of VGG11, we attached the loss modules after the last four max
pooling layers.

For GTAVs, we set the batch size to 128 and used a learning rate of 0.001 with SGD with
a momentum of 0.9. For A2D2s, we used a batch size of 64 with a reduced momentum of
0.8. As the redundancy of the dataset is quite high, we chose an early stopping strategy on
the validation accuracy with patience 30. We used the checkpoint with the highest validation
accuracy to continue. For the loss learning module, we split the early stopping to a first,
detached the gradients from the loss module to the task model and a second early stopping
to stop the training. Different detachment points are examined in Section E.2. We set the
margin ζ and ξ to 0.5. The scale of the L1margin loss λ is set to 0.5. The scaling factor η is
set to 1 for the combined loss.

Further, we neglected extensive augmentations for our active learning setup. As we are
using a stream-based setup, using the normalization to zero mean and unit standard deviation
of the whole training pool is not possible. As some changes between the drives can occur, we
used histogram equalization as a data preprocessing step instead. Due to the high redundancy
of the dataset, we only select between 15% to 42% of the training data. All experiments
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Figure 4: The routes of the GTAVs dataset, best seen in color.

are conducted three times with the seeds 1,42,64. If not named differently, the parameters
suggested by the authors are taken for the state-of-the-art methods. The number of forward
passes for MC dropout is set to 10.

The hyperparameters describe the weights in a combined loss function and are defined
with a hyperparameter search. As the loss is a combined loss, the loss learning task influences
the weights of the layers used for the perception task of the primary model. Therefore, they
should be chosen such that strong regularizing and disturbance effects, leading to decreased
task performance, are avoided. Too strong criteria on loss learning loss and a bad detachment
point lead to underperformance in task results. The parameters can be appropriately selected
by comparing a model with a loss module and a model without a loss module in the initial
training. The second goal is tuning the parameters based on the ranking quality, whereas the
first goal is more important, which can be achieved by a rough grid search. Our findings
show that the approach is robust and not too sensitive to small changes.
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Class Index Classes
Ignored Rain dirt, Blurred area
Nature Nature object
Buildings Buildings
Traffic Guide Electronic traffic, Irrelevant Signs, Traffic guide obj.

Signal corpus, Poles, Grid structure
Traffic signal 1 Traffic signal 2, Traffic signal 3
Traffic sign 1, Traffic sign 2, Traffic sign 3

Non Drivable Non-drivable street, Parking area
Ego Car Ego car
Bicycle Bicycle 1, Bicycle 2, Bicycle 3, Bicycle 4
Pedestrian Pedestrian 1, Pedestrian 2, Pedestrian 3
Small Moving Objects Small vehicles 1, Small vehicles 2, Small vehicles 3
Moving Medium Objects Car 1, Car 2, Car 3, Car 4
Moving Big Objects Truck 1, Truck 2, Truck 3

Utility vehicle 1, Utility vehicle 2, Tractor
Sky Sky
Street Areas Speed Bumper, Driveable cobblestone

Slow drive area, RD normal street
Guiding Road blocks
Lane Markings Zebra crossing, RD restricted area, Painted driv. instr.
Lines Solid line, Dashed line
Sidewalks Sidebars, Curbstone, Sidewalk
Obstacles Obstacles / Trash, Animals

Table 3: Class setting for semantic segmentation.

D Semantic Segmentation Experiments

This section highlights the exact settings of our semantic segmentation experiments based
on object detection subset from A2D2 using a DeeplabV3 Chen et al. [2] model. The loss
learning layers are attached in the same way to the ResNet34 backbone as for ResNet18. Ad-
ditionally, we added loss learning modules to each Atrous Spatial Pyramid Pooling (ASPP)
block of the DeeplabV3 module. We used a version of the dataset also containing the bound-
ing box labels. The splits and query size are set identically to the parameter in the classifi-
cation experiments. The same holds for TPL and loss learning parameters, which are taken
out of the box from the classification experiments. For the backbone, pre-trained weights are
used. For the training, we used a batch size of 32 and a learning rate of 0.05 for the head and
0.005 for the backbone. We did not use any augmentation but the same preprocessing as used
in the classification experiments, except for the image size. The images have been resized
to 640x400. We compared our TPL method to loss learning, a random selection and a MC
dropout entropy-based selection using the mean of the pixel entropy values to determine the
value of each sample. As the exact class remapping used in [5] is not given, we defined 17
classes and provided the mapping in Table 3. The classes "ignored" and "ego_vehicle" are
excluded from the evaluation.
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Method Cycle 1 Cycle 2 Cycle 3 Cycle 4

TPL retrain 0.802(8) 0.923(3) 0.962(5) 0.967(2)
Loss learning retrain 0.827(11) 0.878(8) 0.937(11) 0.938(6)

Random retrain 0.839(18) 0.918(5) 0.950(9) 0.956(5)

TPL continuous 0.833(11) 0.922(6) 0.950(8) 0.960(11)
Loss learning continuous 0.813(17) 0.879(19) 0.938(12) 0.940(3)

Random continuous 0.844(4) 0.902(14) 0.942(8) 0.949(6)
Table 4: Different training strategies for active learning.

E Ablation Study
Additionally to the main experiments, we evaluated the training strategy in Section E.1, the
detachment of the loss learning module in Section E.2 and our modifications to the loss
learning module loss in Section E.3.

E.1 Training Strategy
The topic of the training scheme of AL cycles is relatively unexplored. The model can be
trained from scratch or the current model state can be enhanced and reused. As most works
tend to retrain the model, we use this strategy. Additionally, we can avoid side effects due
to continuous training strategies and focus on the selected properties in this way. As [8] and
[3] reported interesting results by using different strategies, we conducted experiments to
evaluate the decision of [11] to use a continuous training strategy. The results are reported
in Table 4.

As can be seen, the continuous training strategy has a minor effect on all methods evalu-
ated. While TPL and random are decreased at the last cycles and boosted at the first cycles,
it is the other way around for loss learning. The inconsistency of the results shows how
difficult an interpretation and a distinction between the selection method and training strat-
egy is. Interestingly, the order of the methods does not change. Due to the small effect on
performance, continuous training strategies are mainly suitable for time savings.

E.2 Loss Learning Module Detachment
In this section, we evaluate the point of detaching the gradients from the loss learning mod-
ule. Fixed epochs, as proposed by [11], are suboptimal for datasets with lower diversity as
they tend to overfit. As described in Section C, we follow an early stopping strategy for the
detachment. To justify our proposed approach, we compared the early stopping detaching
of gradients with the approach of not detaching at all and depicted the results in Figrue 5.
The figures indicate that the performance of TPL is almost independent of the detachment
point for the GTAVs dataset in the areas of higher-used training data. While at the first two
phases, the accuracy of TPL differs. This can also be observed in the loss learning approach.
However, the effect is more present for the region between the minimum and maximum data
selection size. For A2D2s in Figure 5(c), the effect on loss learning is neglectable, while
TPL shows in the region of the fully trained network differences and achieves higher saving
when not detached. For A2D2s, it should be considered that due to the independent record-
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ings in the training, validation and test set, the distributions can have limitations in overlap.
Therefore, the early stopping on the validation set has limitations.
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(a) GTAVs ResNet18
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(b) GTAVs VGG11
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(c) A2D2s VGG11

Figure 5: Detachment comparison, non-detached is abbreviated with "nd".

Concluding the experiment shows that both methods are rather unsusceptible for the
detachment point. It can be considered a hyperparameter for minor optimization purposes.
The finding additionally underlines the downsides of learning-based approaches like VAAL
[10], loss learning [11] and CoreGCN [1], which showed increased data saving potential by
the cost of additional models and hyperparameters.

E.3 Loss Learning Loss Modifications
In this section, we evaluate our modification to the loss learning loss and highlight the influ-
ence of different parameters.

L1 regularization:
In order to evaluate the effect of our L1 regularization adaption to the loss learning mod-

ule loss function in Equation 3, we compare TPL and the vanilla loss learning with both
losses in Figure 6(a). The plot shows that our loss function adaption, as well as our Tempo-
ral predictive loss function, both improve the vanilla approach individually. As the combined
approach delivers the best performance, both effects are cumulative.

Margin selection:
In the following study, we highlight the effect of the Xi and Zeta margin in Equation

3. For simplification, we use for ζ and ξ the same value and show their effects in Figure
6(b). As the figure indicates, the margin factors have a minor role compared to the loss
function. While higher margins improve the performance in low-data regions, our selected
value shows the highest accuracy. A more fine-grained parameter search would potentially
improve the results further. Conversely, the limited effect of tuning this parameter indicates
that a low-effort parameter search is sufficient, making our method easier to apply.

Lamda factor selection:
Lastly, we examine the lambda factor for the regularization of the loss learning module

loss. Figure 6(c) shows different values for this factor and indicates that the lambda factor has
an impact on regions of low data, which is reduced for regions with more data. While higher
regularization improves the performance in low-data regions, lower and higher regularization
improves the result for low-data regions. The differences between different lambda values
are strongly decreasing for regions with more data. We choose based on the highest accuracy
the value one, which has also been chosen by Yoo et al. [11]. Also, in this case, a more
fine-grained parameter search has the potential to improve the results further. However, the
limited effect of tuning this parameter shows that a low-effort parameter search is sufficient,
proving again that our method is easy to apply.
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(a) Loss function modification with
vanilla comparison for ResNet18
on GTAVS.
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(b) Loss function margin values
ξ and ζ study for ResNet18 on
GTAVS.

16 18 20 22 24
Used training data in [%]

0.6

0.7

0.8

0.9

Ac
cu

ar
y

TPL 1.0
TPL 0.5
TPL 2.0
Fully Trained

(c) Lambda factor comparison for
ResNet18 on GTAVS.

Figure 6: Ablation study of different parameters of the loss learning loss function.
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