
2. Oracle Teacher, Trained with Relevance-Reinforced Inputs

Problem1. Introduction: Knowledge Distillation and Its Problem
Knowledge Distillation

- Technique used to transfer knolwedge from 
teacher to student

- Goal of student: Achieving similar performance 
as the teacher model with fewer parameters

- However, if the teacher model is larger than the 
student model, several problems arised.

�. Entropy

5. Conclusion

- The larger the γ value, the better the clusters between similar classes were expressed.
- It means a higher γ value makes similar classes cluster together better.
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t-SNE (t-distributed Stochastic Neighbor Embedding)

Relevance-Reinforced Data 
- Contrary to the adversarial example, we created relevance-reinforced data by subtracting the gradi-

ent from the original data.
Oracle teacher model

- We put the relevance-reinforced data into the teacher model once again, creating a model with 
extremely high accuracy.

- At this time, since the input data includes ground-truth information, the teacher model that inputs 
relevance-reinforced data was defined as the oracle teacher model.
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Problem 1: Capacity Gap Problem
- Failing for the student model to appropriately receive the knowledge from the teacher model

Problem 2: Distillation Link Problem
- Establishing links of the knowledge between the teacher and the student models

Solution: Explainable Oralce Approach
- We make relevance-reinforced data that contain ground-truth information.
- If we use relevance-reinforced data, the student model can be trained well even with a teacher 

model of the same size as the student model.

- We propose using gradient-based explainable AI techniques 
to improve the model performance and compression effect
of knowledge distillation techniques. 

- Our approach effectively extract high quality knowledge 
using reinforced data.

- Reduce the commonly observed KD problems with small 
teacher model

- Acheive SOTA in knowledge distillation field
- Demonstrate the validity and usefulness of it with ECE, 

t-SNE, and silhouette score.

  Step A: Generating Relevance-Reinforced Inputs
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- We test 16 different pairs of ResNet-based backbones on 
CIFAR-100 dataset.

- Interestingly, despite setting teacher and student models to 
be same, ours outperforms all others.

- This demonstrates the effectiveness of our method in extract-
ing and transferring high-quality knowledge, even with a 
smaller teacher model.

Scratch (Baseline) DKDATT FitNet KD Oracle(Ours) Best Accuracy

- Variation of silhouette score and top-1 accuracy with different γ
- The silhouette score is largest at an appropriate gamma value.

Silhouette Score
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3-a. Is the Knowledge Obtained from
Our Oracle Teacher Model Good Enough?

- The Orcal model is much better calibrated than the scratch.
- It means the Oracle model's response knowledge is more reliable than the scratch 

model's.

ECE (Expected Calibration Error)
Scratch Model (ResNet18)Oracle Model (ResNet18)
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3-b. Knowledge Distillation
Performance Comparison (Accuracy)

Perfect Calibration Model Output Gap


