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A Hyperbolic Geometry Review

We give a quick review about hyperbolic geometry to make the paper self-contained.

A.1 Topological Space and Topological Homeomorphism

A topological space is a geometrical space which has the notion of closeness. The closeness
can, but not necessarily, be measured by the notion of distance to determine if points are
close to each other. A homeomorphism is a continuous one-to-one mapping function or a
bicontinuous function between topological spaces that has a continuous inverse function.

A.2 Manifold and Tangent Space

A d-dimensional Manifold Md (which can be embedded in Rd+1) is a topological space
which can be locally approximated by a d-dimensional Euclidean space Rd . For any point
x∈Md , there is a homeomorphism between the neighbourhood of x and the Euclidean space
Rd . Lines and circles are examples of one-dimensional manifolds. Planes and spheres are
examples of two-dimensional manifolds which are called surfaces. The notion of manifold
is a generalization of surfaces in any dimension d. The tangent space TxMd at point x ∈Md

is a d-dimensional hyperplane which is embedded in Rd+1 that locally approximates the
manifold Md around the point x.
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Figure 1: Projection of a hyperbolic geodesic from H2,K onto the Klein disk and the Poincaré
disk.

A.3 Riemannian Metric and Riemannian Manifold

A Riemannian metric g is used to define geometric notions on the manifold such as distances,
angles, areas or volumes. It is a collection of smoothly varying inner products on tangent
spaces, gx : TxMd ×TxMd → R. A Riemannian manifold can then be defined as (Md ,g).

A.4 Curvature and Geodesics

A curvature measures how much a curve deviates from being a straight line. Euclidean
spaces have zero curvature whereas non-Euclidean spaces have non-zero curvature. For
example, spheres have constant positive curvatures whereas hyperbolic spaces have constant
negative curvatures. Geodesics are the generalizations of shortest paths in graphs or lines in
Euclidean geometry to non-Euclidean geometry. These are the curves that give the shortest
paths between pairs of points.

A.5 Hyperbolic Space

A hyperbolic space is a Riemannian manifold with a constant negative curvature. Many
models have been proposed to model a hyperbolic space such as the Lorentz model (also
called the hyperboloid model), the Poincaré model and the Klein model. The Lorentz model
is the upper sheet of a two-sheeted hyperboloid. The Poincaré model and the Klein model are
the projections of the Lorentz model onto the hyperplanes x0 = 0 and x0 = 1, respectively.
There are bijection functions to map between different hyperbolic models as they are all
isomorphic. Figure 1 shows the three different models which model the hyperbolic space.

Let ⟨., .⟩L : Rd+1 ×Rd+1 → R represents the Lorentz-Minkowski inner product where
⟨x,y⟩L := ∑

d
i=1 xiyi − x0y0 = xT gLy where gL = diag(−1,1, . . . ,1) is a diagonal matrix that

represents the Riemannian metric for the hyperbolic manifold. Let Hd,K be a d dimensional
hyperboloid model with a constant negative curvature −1/K where K > 0. Then we have:
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Hd,K := {x ∈ Rd+1 : ⟨x,x⟩L =−K,x0 > 0} (1)

Note that x0 > 0 to indicate the upper half of the hyperboloid manifold. In special rela-
tivity, x0 is referred to as the time axis whereas the rest of axes are called the spatial axes.

A.6 Exponential and Logarithmic maps

The exponential and logarithmic maps are used to map between the hyperbolic space and the
tangent space and represent a bijection between the tangent space at a point and the hyper-
boloid. The exponential map maps a point v ∈ TxHd,K where x ∈ Hd,K to the hyperboloid
Hd,K such that v ̸= 0 and is defined as:

expK
x (v) = cosh(

∥v∥L√
K

)x+
√

K sinh(
∥v∥L√

K
)

v
∥v∥L

(2)

where ∥v∥L =
√
⟨v,v⟩L is the norm of v. The logarithmic map maps a point y ∈ Hd,K to

the tangent space TxHd,K centered at point x ∈ Hd,K such that x ̸= y and is defined as:

logK
x (y) = dK

L(x,y)
y+ 1/K⟨x,y⟩Lx

∥y+ 1/K⟨x,y⟩Lx∥L
(3)

where dK
L(x,y) is the Minkowskian distance between two points x and y in Hd,K and is given

by:

dK
L(x,y) =

√
K arcosh(−⟨x,y⟩L/K) (4)

B Lorentz Transformations

A Lorentz transformation matrix Λ should satisfy the following constraint:

Λ
T gLΛ = gL (5)

where Λ ∈ R(d+1)×(d+1) and T represents the transpose operation of the matrix.

B.1 Spatial Rotation Operation

Let P =

[
1 0
0 Q

]
to rotate the spatial coordinates and keep the time/first coordinate fixed.

From Equation 5, we have:

PT gLP =

[
1 0
0 QT

][
−1 0
0 I

][
1 0
0 Q

]
=

[
−1 0
0 QT IQ

]
=

[
−1 0
0 I

]
= gL

So, we have QTQ = I i.e. Q belongs to the special orthogonal group SO(d).
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Table 1: Datasets statistics

Dataset nodes node features nodes classes edges δ -hyperbolicity

Disease 1044 1000 2 1043 0
Airport 3188 11 4 18631 1
PubMed 19717 500 3 88651 3.5

Cora 2708 1433 7 5429 11

B.2 Boost Operation

Let L =

[
a bT

d
bd Cd×d

]
where C = CT as L is a symmetric matrix.

From Equation 5, we have:

LT gLL =

[
a bT

d
bd CT

][
−1 0
0 I

][
a bT

d
bd C

]
=

[
a bT

d
bd C

][
−a −bT

d
bd C

]
=

[
−a2 +bd ·bd −abd +Cbd
−abd +Cbd −bd ⊗bd +C2

]
= gL =

[
−1 0
0 I

]
So, we get −a2 +bd ·bd =−1 and using the hyperbolic identity: −cosh2

ω + sinh2
ω =

−1, we have a = coshω and bd = (sinhω)nd where nd is a unit vector. To solve for C, we
have −bd ⊗bd +C2 = I. So, we get:

C2 = I+(sinh2
ω)nd ⊗nd = I+(−1+ cosh2

ω)nd ⊗nd

= I+(1−2+ cosh2
ω +2coshω −2coshω)nd ⊗nd

= I+(1− coshω)2nd ⊗nd −2(1− coshω)nd ⊗nd = (I− (1− coshω)nd ⊗nd)
2

and using −abd +Cbd = 0, we omit the negative solution and accept the positive one.
So, we have C = I− (1− coshω)nd ⊗nd as the solution.

C Datasets Statistics and Hyperparameters Details
Table 1 shows the statistics for all datasets. The δ -hyperbolicity represents the Gromovs
hyperbolicity and is reported on these datasets by [1]. The lower the δ -hyperbolicity value,
the closer the graph to a tree i.e. more hyperbolic where a tree structure has a δ -hyperbolicity
value of zero as the case for the Disease dataset. The higher the δ -hyperbolicity value, the
closer the graph to a complete graph. The hyperparameters used for network training are
shown in Table 2.
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Table 2: Hyperparameters used for network training.

Dataset Disease Airport PubMed Cora

Parameter LP NC LP NC LP NC LP NC

Learning rate 0.001 0.005 0.5 0.2 0.05 0.04 0.001 0.001
Number of layers 2 6 1 2 1 5 1 3
Weight decay 0.0 0.0 1e-05 0.0 0.0 0.01 1e-04 0.01
Dropout 0.0 0.0 0.0 0.6 0.5 0.8 0.7 0.9
Margin 2 2 0.1 2 0.1 1 0.1 2
Normalize features 0 1 1 0 1 1 1 1


