

MFSC: Matching by Few-Shot Classification

Daniel Shalam, Elie Abboud, Roee Litman, Simon Korman

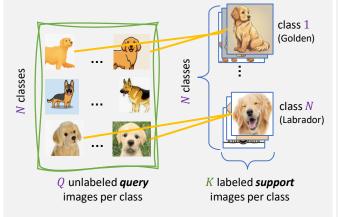
GitHub: github.com/Elie-1996/MFSC-

Matching-By-Few-Shot-Classification

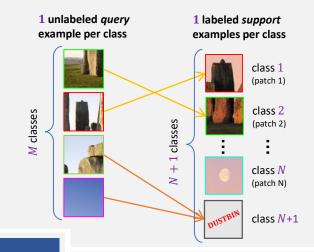
MATCHING

☐ The task of comparing sets of related items: e.g. images / patches

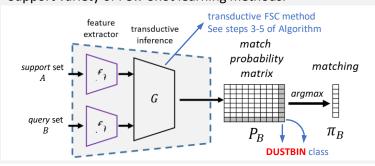
Person Re-identification



Patch Matching


FEW-SHOT CLASSIFICATION (FSC)

- \square The N-way K-shot Q-query classification task
- ☐ Common setup is 20-way 1-shot 15-query
- ☐ A well studied field. e.g.:
 - meta-learning (MAML [1])
 - transductive learning (PT-MAP [2]).


From MATCHING to FSC

- ☐ Re-formulating set-matching using tools from meta- and few-shot classification
- ☐ A matching *task* is typically composed of large N (e.g., N = number of patches) with small Qand K, which is a challenging FSC setup

MFSC Framework

- Adopt a transductive classifier to utilize all the data effectively
- End-to-end training framework for using meta-learning
- Support variety of Few-Shot learning methods.

ALGORITHM

- MFSC transductive matching module
- Uses PT-MAP [2] for transductive inference

Transd-FSC (image sets A, B; extractor f)

- 1. $f_A = f(A)$; $f_B = f(B)$; # feature extraction
- 2. $f_A = PT(f_A)$; $f_B = PT(f_B)$; # power transform
- 3. $C = f_A$ # initialize class centers
- 4. **repeat** k times:
- (a) $D = dists(f_B, C) \# N \times M$ feature-center ℓ_2 dists
- (b) $P_B = Sinkhorn(D, mode) \# opt. transport$ (remove last non-match row/col in 'partial' mode)
- (c) $C = \frac{\alpha}{2}(f_A + f_B P_B) + (1 \alpha)C$ # update centers
- 5. **return** P_B # match prob. matrix

REFERENCES

- [1] Hu, Gripon, Pateux. Leveraging the feature distribution in transfer-based few-shot learning, ICANN, 2021,
- [2] Finn, Abbeel, Levine. Model-agnostic meta-learning for fast adaptation of deep networks. ICML. 2017.
- [3] Balntas, Lenc, Vedaldi, Tuytelaars, Matas, and Mikolajczyk. Hpatches: A benchmark and evaluation of handcrafted and learned local descriptors. tPAMI, 2019.
- [4] Bian, Wu, Zhao, Liu, Zhang, Cheng, Reid. An evaluation of feature matchers for fundamental matrix estimation.
- [5] Li, Zhao, Xiao, Wang. Deepreid: Deep filter pairing neural network for person re-identification. CVPR, 2014.
- [6] Zheng, Shen, Tian, Wang, Wang, and Tian. Scalable person re-identification: A benchmark, ICCV, 2015.

MATCHING of PATCHES

- HPatches [3] dataset
- o 2.5 million patches from 116 image sequences
- o Matching between the set of extracted patches of pairs of images (typically 1000-2000 per pair)

method	category	'easy'	'hard'	'tough'	mean
Hnet++ [25]		72.2%	56.2%	37.9%	55.4%
Hnet-PS [27]		69.3%	58.6%	44.6%	57.5%
L2-Net [36]	learned	73.0%	57.5%	39.1%	56.6%
DOAP-ST-LM [<mark>15</mark>]		74.5%	66.9%	57.0%	66.3%
SOSNet [37]		76.3%	68.4%	56.5%	67.1%
MFSC-MAML [2, 12]	meta	77.8%	65.9%	50.8%	64.9%
MFSC-LapShot [47] (HNet++)		79.9%	70.3%	55.1%	68.3%
MFSC -PTMAP [16] (HNet++)	transductive	82.2%	71.6%	52.8%	68.8%
MFSC-PTMAP [16] (HNet-PS)	transductive	79.5%	73.1%	61.6%	71.4%
MFSC-PTMAP [16] (SOSNet)		<u>84.3</u> %	80.0%	<u>71.6</u> %	<u>78.6</u> %
MFSC-PTMAP [16] (HNet++)	meta +	77.9%	73.0%	63.9%	71.6%
MFSC-PTMAP [16] (SOSNet)	transductive	85.2%	81.1%	73.1%	79.8 %

IMAGE ALIGNEMENT

- o FM-Bench [4] benchmark
- o 1000s of image matching pairs, over several datasets
- o Matching pipelines for fundamental matrix estimation

desc	fit	prune	recall	IR-m	IR	corrs-m	corrs
	C	RT	28.2	48.1	67.2	415.3	60.5
SIFT	RS	MFSL	34.5	53.4	82.0	352.0	54.0
SII	IS	RT -	45.5	48.1	75.4	415.3	208.3
	Γ	MFSL	52.8	53.4	81.8	352.0	177.0
±	S	RT	49.5	80.0	87.2	259.1	52.7
Vet-	RS	MFSL	52.4	78.5	88.3	367.7	70.5
HardNet+-	IS	RT	61.9	80.0	88.3	259.1 367.7	130.5
Ha	Γ	MFSL	64.3	78.5	88.8	367.7	184.9

PERSON RE-ID

- o CUHK03 [5] and Market-1501 [6] benchmarks
- Rank the similarities of each query image (identity) against a large gallery set
- Large scale MFSC tasks ($N \sim 10,000$).

benchmark	CUH	K03-det	CUH	K03-lab	Mark	tet-1501
network	mAP	Rank-1	mAP	Rank-1	mAP	Rank-
MHN [7]	65.4	71.7	72.4	77.2	85.0	95.1
OSNet [46]	67.8	72.3	-	_	84.9	94.8
BDB [10]	73.6	76.4	76.7	79.4	86.2	94.5
MFSC-BDB	75.8	77.3	80.4	89.8	87.0	95.2