ManifoldNeRF: View-dependent Image Feature Supervision for Few-shot Neural Radiance Fields

Daiju Kanaoka^{1,2} kanaoka.daiju327@mail.kyutech.jp Motoharu Sonogashira² motoharu.sonogashira@riken.jp Hakaru Tamukoh^{1,3} tamukoh@brain.kyutech.ac.jp Yasutomo Kawanishi² yasutomo.kawanishi@riken.jp

- ¹ Kyushu Institute of Technology Fukuoka, Japan
- ² RIKEN Guardian Robot Project Kyoto, Japan
- ³ Research Center for Neuromorphic AI Hardware Fukuoka, Japan

1 Experimental details

The proposed method was trained by following a training process shown in Algorithm 1. The hyperparameters in the training process, manifold loss interval K and scaling factor λ , were set to 10 and 0.1, respectively. These are the same values as used in the official implementation of DietNeRF [\square].

The IDs of the known viewpoints used in the randomly selected experiments from the NeRF synthetic dataset [2] were [2, 16, 26, 55, 73, 75, 86, 93], and those used in the DTU MVS dataset were [0, 6, 7, 23, 32, 37, 39, 48].

2 Analysis of feature vector obtained from pre-trained feature extractor

In this section, we describe experiments conducted to verify the changes in feature vectors with a change in viewpoints. For this experiment, we generated 36 images rendered by rotating the camera position by 10 degrees around an axis of the LEGO scene in the NeRF synthetic dataset. We input these images to the vision encoder of the CLIP to obtain the feature vectors. The obtained feature vectors were projected onto a 2D space using UMAP and visualized in the 2D space to confirm the changes in feature vectors along with continuous changes in viewpoints.

The experimental results are shown in Fig. 1. The feature vectors of adjacent viewpoints are located in the neighborhood, indicating that the feature vectors change continuously as the viewpoints change, as claimed by the Parametric Eigenspace $[\mathbf{B}]$.

Algorithm 1: Training process of ManifoldNeRF

Data: Known viewpoints $\mathcal{D} = \{(I, \mathbf{p})\}$, a pre-trained feature extractor $\phi(\cdot)$, threshold of distance between viewpoints ε , manifold loss interval K, scaling factor λ , batch size $|\mathcal{R}|$, learning rate η_i , MSE loss \mathcal{L}_{MSE} , manifold loss \mathcal{L}_{ML} **Result:** Trained Neural Radiance Field $f_{\theta}(\cdot, \cdot)$ 1 Initialize NeRF $f_{\theta}(\cdot, \cdot)$; 2 Pre-compute feature vectors $\mathcal{V} = \{\mathbf{v} = \phi(I) : (I, \mathbf{p}) \in \mathcal{D}\};\$ 3 Pre-compute pairs of viewpoint $\mathcal{P} = \{ (\{\mathbf{p}_{k,1}, \mathbf{v}_{k,1}\}, \{\mathbf{p}_{k,2}, \mathbf{v}_{k,2}\}) : (I_{k,1}, \mathbf{p}_{k,1}), (I_{k,2}, \mathbf{p}_{k,2}) \in \mathcal{D}, \mathbf{v}_{k,1}, \mathbf{v}_{k,2} \in \mathcal{V}, if |\mathbf{p}_{k,1} - \mathbf{p}_{k,2}| < \varepsilon \};$ 4 for *i* from 1 to num_iters do Sample ray batch \mathcal{R} , ground-truth colors $\mathbf{C}(\cdot)$; 5 Render rays $\widehat{\mathbf{C}}(\cdot)$; 6 $\mathcal{L} \leftarrow \mathcal{L}_{MSE}(\mathcal{R}, \mathbf{C}, \widehat{\mathbf{C}});$ 7 if i % K = 0 then 8 Sample pair of viewpoints $(\{\mathbf{p}_{k}^{1}, \mathbf{v}_{k,1}\}, \{\mathbf{p}_{k,2}, \mathbf{v}_{k,2}\}) \sim \mathcal{P};$ 9 Compute interpolation coefficient s; 10 Compute unknown viewpoint $\hat{\mathbf{p}}_{u} = SLERP(\mathbf{p}_{k,1}, \mathbf{p}_{k,2}, s);$ 11 Render image \widehat{I} at viewpoint $\widehat{\mathbf{p}}_{\mu}$; 12 Compute feature vector of \widehat{I} : $\widehat{\mathbf{v}}_u = \phi(\widehat{I})$; 13 Interpolate feature vector $\mathbf{v}_u = LERP(\mathbf{v}_{k,1}, \mathbf{v}_{k,2}, s)$ 14 $\mathcal{L} \leftarrow \mathcal{L} + \mathcal{L}_{\mathrm{ML}}(\mathbf{v}_u, \widehat{\mathbf{v}}_u);$ 15 end 16 Update parameters: $\theta \leftarrow Adam(\theta, \eta_i, \nabla_{\theta} \mathcal{L});$ 17 18 end

Table 1: Results of performance change with different number of training data. The training dataset is a LEGO scene from the NeRF synthetic dataset.

RF	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow	ManifoldNeRF	$\mathbf{PSNR}\uparrow$	SS
	9.035	0.504	0.468	4	9.219	0.52
	9.727	0.521	0.469	8	21.607	0.800
	10.001	0.552	0.455	12	25.215	0.874
5	27.613	0.926	0.065	16	25.793	0.884

3 Performance with different numbers of training data

In the experiments conducted in Sec. 3 of the paper, the feature vectors between viewpoints differing by 90 degrees were calculated to be close to the ground truth. Therefore, we assumed that the performance of the proposed method would be higher when we selected 8 images if we prepared viewpoints that differ by 90 degrees from each other in the horizontal and the diagonal viewpoints.

In this section, we evaluated the change in performance when the number of training data is changed. Table 1 shows the experimental results when we changed the training data for NeRF and ManifoldNeRF to 4, 8, 12, and 16. NeRF perform poorly when the training data is less than 16. However, the performance of ManifoldNeRF increased significantly when the training data was 8 and above.

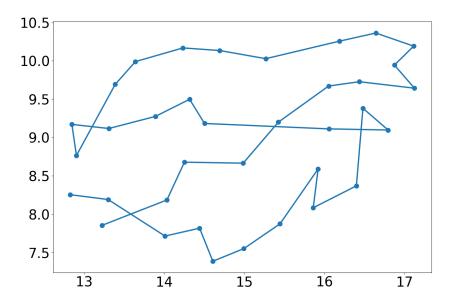


Figure 1: Projected feature vectors extracted with the pre-trained feature extractor into a twodimensional space using UMAP. The dots in the graph denote the projected feature vectors, and the lines connect the dots corresponding to adjacent viewpoints.

4 Details of experimental results using the DTU MVS dataset

Table 2 and Fig. 2 show the experimental results for 8 scenes selected from the DTU MVS dataset [2]. ManifoldNeRF performed well in 4 scenes of the 8 scenes. However, in the remaining 4 scenes, the performance was comparable to that of vanilla NeRF. The reason why the proposed method sometimes performed not well is that the performance of Maniofld-NeRF is strongly dependent on the location of known viewpoints. In contrast, InfoNeRF [2] performed more stably than the other methods.

Next, Table 3 and Fig. 3 show the results of fine-tuning the model trained with InfoNeRF using ManifoldNeRF. We confirmed the performance improvement by fine-tuning the model trained with InfoNeRF. The reason for the performance improvement is that InfoNeRF applies constraints to each point on the ray, whereas ManifoldNeRF applies constraints to the feature vectors of the image obtained from the viewpoints between neighbouring viewpoints, and the optimization targets are different. From the above, we demonstrate that even when the known viewpoints are random, combining other methods with the proposed method can improve performance.

#6	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow	#56	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIP
NeRF	15.550	0.460	0.472	NeRF	21.484	0.621	0.35
InfoNeRF	13.352	0.397	0.462	InfoNeRF	18.644	0.477	0.47
DietNeRF	15.210	0.426	0.476	DietNeRF	19.026	0.538	0.42
ManifoldNeRF (ours)	16.232	0.508	0.451	ManifoldNeRF (ours)	22.197	0.639	<u>0.36</u>
#65	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow	#114	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIPS
NeRF	11.970	0.481	0.527	NeRF	18.691	0.636	0.39
InfoNeRF	14.786	0.484	0.431	InfoNeRF	21.382	0.611	0.36
DietNeRF	20.883	0.698	0.352	DietNeRF	20.861	0.673	0.33
ManifoldNeRF (ours)	22.197	0.702	0.302	ManifoldNeRF (ours)	23.202	0.732	0.29
#30	PSNR ↑	SSIM ↑	LPIPS ↓	#41	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIPS
NeRF	8.054	0.491	0.560	NeRF	8.236	0.312	0.63
InfoNeRF	17.657	0.663	0.254	InfoNeRF	14.681	0.484	0.42
DietNeRF	6.092	0.298	0.675	DietNeRF	8.36	0.246	0.63
ManifoldNeRF (ours)	6.406	0.387	0.633	ManifoldNeRF (ours)	<u>8.963</u>	<u>0.317</u>	0.62
#45	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIPS ↓	#61	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIP
NeRF	7.558	0.220	0.710	NeRF	7.793	0.236	0.68
		0.422	0.441	InfoNeRF	14.634	0.543	0.39
InfoNeRF	10.719	0.422	0.441	mortera	1 100 1	0.545	0.07
InfoNeRF DietNeRF	10.719 7.097	0.422	<u>0.441</u> <u>0.662</u>	DietNeRF	11.974	<u>0.463</u>	0.50

Table 2: Results of training 8 randomly selected images in 8 scene of the DTU MVS dataset. The highest score is in bold, and the second-highest score is underlined.

References

- [1] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting NeRF on a diet: Semantically consistent few-shot view synthesis. In *Proceedings of the 18th IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 5885–5894, October 2021.
- [2] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs. Large scale multi-view stereopsis evaluation. In *Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 406–413, June 2014.
- [3] Mijeong Kim, Seonguk Seo, and Bohyung Han. InfoNeRF: Ray entropy minimization for few-shot neural volume rendering. In *Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 12912–12921, June 2022.
- [4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. *Computer Vision – ECCV 2020*, pages 405–421, 2020.
- [5] Hiroshi Murase and Shree K Nayar. Visual learning and recognition of 3-D objects from appearance. *International Journal of Computer Vision*, 14(1):5–24, January 1995.

Table 3: Results of fine-tuning the model trained with InfoNeRF using ManifoldNeRF. The results w/o fine-tuning are the same as for InfoNeRF in Table 2. The highest score is in bold, and the second-highest score is underlined.

#6	$\mathbf{PSNR}\uparrow$	$\mathbf{SSIM} \uparrow$	$\textbf{LPIPS} \downarrow$
w/o fine-tuning	13.352	0.397	0.462
20k iters	15.157	0.438	0.491
40k iters	15.210	0.448	0.476
60k iters	15.087	0.461	<u>0.458</u> s
80k iters	<u>15.211</u>	0.471	<u>0.458</u>
100k iters	15.398	0.472	0.448
#41	PSNR ↑	SSIM ↑	LPIPS \downarrow
w/o fine-tuning	14.681	0.484	0.423
20k iters	17.032	0.570	0.443
40k iters	17.111	0.585	0.427
60k iters	16.890	0.582	0.422
80k iters	16.904	0.595	0.411
100k iters	17.031	0.599	0.405
#56	PSNR ↑	SSIM \uparrow	LPIPS \downarrow
w/o fine-tuning	18.644	0.477	0.474
20k iters	<u>19.912</u>	0.510	0.472
			0.1.5
40k iters	20.130	0.528	0.462
40k iters 60k iters	20.130 19.880	0.528 <u>0.532</u>	0.462 0.458
60k iters	19.880	0.532	0.458
60k iters 80k iters	19.880 19.773	$\frac{0.532}{0.531}$	0.458 <u>0.453</u>
60k iters 80k iters 100k iters	19.880 19.773 19.902	0.532 0.531 0.540	0.458 <u>0.453</u> 0.451
60k iters 80k iters 100k iters #65	19.880 19.773 19.902 PSNR ↑	0.532 0.531 0.540 SSIM↑	0.458 <u>0.453</u> 0.451 LPIPS ↓
60k iters 80k iters 100k iters #65 w/o fine-tuning	19.880 19.773 19.902 PSNR ↑ 14.786	0.532 0.531 0.540 SSIM↑ 0.484	0.458 0.453 0.451 LPIPS↓ 0.431
60k iters 80k iters 100k iters #65 w/o fine-tuning 20k iters	19.880 19.773 19.902 PSNR ↑ 14.786 20.468	$ \begin{array}{r} $	$0.458 \\ 0.453 \\ 0.451 \\ 0.451 \\ 0.451 \\ 0.451 \\ 0.451 \\ 0.369 \\ - 0.431 \\ \overline{0.369} \\ - 0.431 \\ - 0.431 \\ \overline{0.369} \\ - 0.431 \\ - 0.$
60k iters 80k iters 100k iters #65 w/o fine-tuning 20k iters 40k iters	19.880 19.773 19.902 PSNR ↑ 14.786 20.468 20.615	$\frac{0.532}{0.531}$ 0.540 SSIM \uparrow $-\frac{0.484}{0.658}$ 0.673	$0.458 \\ 0.453 \\ 0.451 \\ 0.451 \\ 0.451 \\ 0.451 \\ 0.451 \\ 0.369 \\ 0.349 \\ 0.349 \\ 0.458 \\ 0.45$

#30	$\mathbf{PSNR}\uparrow$	$\mathbf{SSIM} \uparrow$	$\mathbf{LPIPS} \downarrow$
w/o fine-tuning	17.657	0.663	0.254
20k iters	20.335	0.808	0.197
40k iters	20.412	0.828	0.185
60k iters	<u>20.364</u>	0.839	0.183
80k iters	20.359	0.835	0.180
100k iters	20.285	<u>0.837</u>	0.179
#45	PSNR ↑	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow
w/o fine-tuning	10.719	0.422	0.441
20k iters	14.867	0.504	0.412
40k iters	14.882	0.514	0.399
60k iters	14.842	0.520	0.390
80k iters	14.898	0.523	0.389
100k iters	14.903	0.523	0.383
#61	$\mathbf{PSNR}\uparrow$	SSIM \uparrow	$\textbf{LPIPS} \downarrow$
#61 w/o fine-tuning	PSNR ↑ 14.634	SSIM ↑ 0.543	LPIPS ↓ 0.395
			· ·
w/o fine-tuning	14.634	0.543	0.395
w/o fine-tuning 20k iters	14.634 15.588	- 0.543 - 0.544	$-\frac{0.395}{\bar{0}.\bar{4}37}$
w/o fine-tuning 20k iters 40k iters	14.634 15.588 15.926	- <u>0.543</u> - <u>0.544</u> - <u>0.554</u>	$-\frac{0.395}{\overline{0.437}}$
w/o fine-tuning 20k iters 40k iters 60k iters	14.634 15.588 15.926 15.772	$- \frac{0.543}{0.544} - \frac{0.543}{0.554} - \frac{0.563}{0.563}$	$-\frac{0.395}{0.437}\frac{0.420}{0.415}$
w/o fine-tuning 20k iters 40k iters 60k iters 80k iters	14.634 15.588 15.926 15.772 <u>15.861</u>	0.543 0.544 0.554 <u>0.563</u> 0.568	$\begin{array}{r} 0.395\\ \hline 0.437\\ 0.420\\ 0.415\\ \hline 0.409\\ \end{array}$
w/o fine-tuning 20k iters 40k iters 60k iters 80k iters 100k iters	14.634 15.588 15.926 15.772 <u>15.861</u> 15.799	0.543 0.544 0.554 <u>0.563</u> 0.568 0.560	$\begin{array}{r} 0.395\\ \overline{0.437}\\ 0.420\\ 0.415\\ \underline{0.409}\\ 0.403\\ \end{array}$
w/o fine-tuning 20k iters 40k iters 60k iters 80k iters 100k iters #114	14.634 15.588 15.926 15.772 <u>15.861</u> 15.799 PSNR ↑	0.543 0.544 0.554 0.563 0.568 0.560 SSIM ↑	0.395 0.437 0.420 0.415 <u>0.409</u> 0.403 LPIPS ↓
w/o fine-tuning 20k iters 40k iters 60k iters 80k iters 100k iters 100k iters #114 w/o fine-tuning	14.634 15.588 15.926 15.772 <u>15.861</u> 15.799 PSNR ↑ 21.382	0.543 0.544 0.554 0.563 0.568 0.560 SSIM↑ 0.611	$\begin{array}{c} 0.395\\ \overline{0.437} \\ 0.420\\ 0.415\\ \underline{0.409}\\ \textbf{0.403}\\ \hline \textbf{LPIPS} \downarrow\\ 0.364 \end{array}$
w/o fine-tuning 20k iters 40k iters 60k iters 80k iters 100k iters #114 w/o fine-tuning 20k iters	$\begin{array}{c} -14.634\\ \overline{15.588}\\ 15.926\\ 15.772\\ \underline{15.861}\\ 15.799\\ \hline \textbf{PSNR}\uparrow\\ -21.382\\ -2\overline{1.902}\\ \end{array}$	$\begin{array}{c} 0.543\\ \hline 0.544\\ 0.554\\ \hline 0.563\\ \hline 0.568\\ \hline 0.560\\ \hline \textbf{SSIM}\uparrow\\ \hline 0.658\\ \hline \end{array}$	$\begin{array}{c} & 0.395\\ \hline 0.437\\ 0.420\\ 0.415\\ \hline 0.409\\ \hline 0.403\\ \hline \textbf{LPIPS}\downarrow\\ \hline & 0.364\\ \hline 0.372 - \end{array}$
w/o fine-tuning 20k iters 40k iters 60k iters 80k iters 100k iters #114 w/o fine-tuning 20k iters 40k iters	14.634 15.588 15.926 15.772 15.861 15.799 PSNR ↑ 21.382 21.902 22.092	$- \begin{array}{c} 0.543 \\ \hline 0.554 \\ 0.554 \\ \hline 0.563 \\ \hline 0.560 \\ \hline \\ \textbf{SSIM} \uparrow \\ \hline - \begin{array}{c} 0.611 \\ \hline 0.658 \\ 0.672 \\ \hline \end{array}$	$\begin{array}{c} & 0.395\\ \hline 0.437\\ 0.420\\ 0.415\\ \hline 0.409\\ 0.403\\ \hline \textbf{LPIPS}\downarrow\\ \hline & 0.364\\ \hline 0.372\\ \hline 0.358\\ \end{array}$

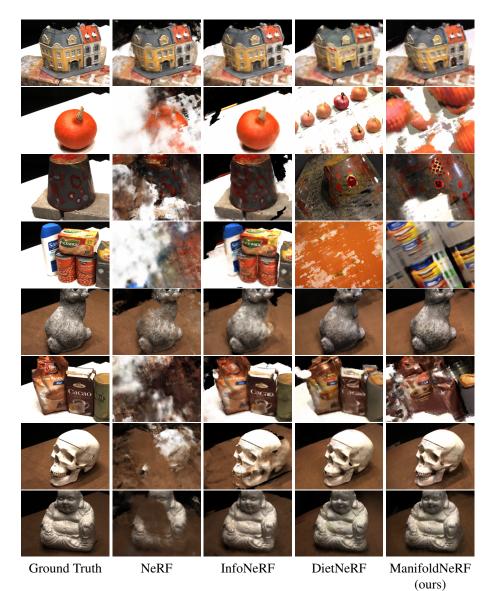


Figure 2: Qualitative comparison on 8 scenes of the MVS DTU dataset

w/o fine-tuning

w/ fine-tuning 100k iters Figure 3: Qualitative results of fine-tuning.