VARIATIONAL AUTOENCODERS FOR LUNG CANCER DIAGNOSIS

Ben Keel, Aaron Quyn, David Jayne, Sam Relton

mm17b2k@leeds.ac.uk

GitHub benkeel/VAE_lung_lesion_BMVC

UNIVERSITY OF LEEDS

MOTIVATION

Recent advances in generative methods have brought them to the forefront of AI research.VAEs offer many avenues of potential research:

- **EXPLAINABLE FEATURES AND CLASSIFICATION**
- **SYNTHETIC DATA**

LATENT TRAVERSALS

This work aims to demonstrate these methods on a dataset of lung cancer lesions.

MATERIALS AND METHODS

DATASET:

Results are produced from the LIDC-IDRI dataset which holds 875 annotated CT scans [2]. Malignancy labels and segmentation masks were agreed by 4 radiologists.

METHODS:

- Gaussian VAE and Dirichlet VAE (encourages disentanglement).
- Extract latent vectors and use as feature representations in Multi-Layered Perceptron (MLP) diagnostic model.
- K-Means and CLASSIX clustering.

WHY VAEs?

- **unsupervised:** do not require labelled data.
- **generative:** can produce (realistic) synthetic data

LATENT EXPLORATION

CLUSTERING:

ORIGINAL IMAGES

VAE RECONSTRUCTIONS

LUNG CANCER DIAGNOSIS

- Results presented show that VAE + MLP combination achieves state-of-the-art performance for lung cancer diagnosis: **0.98 AUC** and **93% Accuracy**.
- Best model uses fine-tuning of encoder with MLP loss to produce classification-optimised latent vectors.
- Direct comparison with Silva et al. [4] who used VAE latent vectors for same task.

Shows lesions are separated by shape, patient and class in latent space:

- **58%** of patients had over 50% of slices in a single cluster.
- **70%** of clusters had over 75% of one class (malignant/non-mal).
- See samples from highest proportion malignant/benign clusters.

LATENT TRAVERSALS:

 Initial work shows its possible to find generalisable and clinically meaningful feature directions.

• Uses average direction vector between centre of two groups of similar images with/without a given feature. Multiples of the vector are applied to a new image to generate a smooth transition.

LATENT TRAVERSAL / FEATURE DIRECTIONS

TUMOUR GROWTH

• VAE feature vectors are resistant to noise/small changes unlike traditional CNN-derived features.

	VAE _{EM}	VAE	Systematic	Review [3]	Silva et al. [4]	Radiologist [1]	
AUC	0.98	0.89		0.7 - 0.97	0.94	0.85	
Accuracy	0.93	0.82		0.88 - 0.99	0.90		
	BENIC	GN CLUS	TER		MALIGNANT CLUSTER		

NEXT STEPS

Use clustering to generate **pseudo-labels** for weakly supervised classification.

- See how latent traversals affect classifications for **diagnostic feature discovery**.
- Create synthetic data to help reduce overfitting.
- **Segmenting bone and fat** to remove this impact from the latent space.
- Find direction corresponding to time **Temporal VAE** for time to event data e.g. pre/post treatment scans. Evolve lesions in time to look for response to treatment.

REFERENCES:

[1] AI Mohammad, S. L. Hillis, W. Reed, M. Alakhras, and P. C. Brennan. Radiologist performance in the detection of lung cancer using CT. Clinical Radiology, 74(1):67–75, 2019

[2] Armato, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R. et al. [2011]. The Lung Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans Medical Physics 38(2) 915–931.

[3] Jassim, M. M. and Jaber, M. M. Systematic review for lung cancer detection and lung nodule classification: Taxonomy, challenges, and recommendation future works. Journal of Intelligent Systems, 31(1):944–964, 2022.

[4] Silva, F., Pereira, T., Frade, J., Mendes, J., Freitas, C. et al. [2020]. Pre-training autoencoder for lung nodule malignancy assessment using CT images. Applied Sciences 10(21).