

Foveation in the Era of Deep Learning

George Killick, Paul Henderson, Paul Siebert, Gerardo Aragon-Camarasa School of Computing Science, University of Glasgow

 \checkmark

 \checkmark

 \checkmark

 \checkmark

X

X

Foveated Images

- \succ Wide field of view
- ➢ High visual acuity
- > Fewer pixels than uniform images
- > Appealing for efficient computer vision systems
- > Difficult to process with convolutional layers
- > In practice, have shown minimal improvement over uniform sampling [1]

Our Approach (Graph Convolution)

Previous Approaches

Visualization of Filter Deformations

Our Graph Convolution

Standard Convolution

Filter deforms as it is translated

[2]

Sequential Attention Architecture

Classification Accuracy on Imagenet-100

Sensor	Operator	# Fixations	# Input Pixels	GFLOPs	Accuracy (%)
Uniform	Conv	-	112x112	0.20	70.0
Foveated (ours)	Graph Conv	-	112 ²	0.20	72.5
FCG [5]	Conv	2	112x112	0.41	70.2
Log-Polar [4]	Conv	2	80x160	0.41	70.4
Multi-FoV Crops [3]	Conv	2	2x80x80	0.41	72.8
Foveated (ours)	Graph Conv	2	112 ²	0.41	73.8
Foveated (ours)	Graph Conv	3	112 ²	0.61	76.5

> Comparisons of different methods on Imagenet-100, a natural image dataset comprised of 130,000 examples across 100 classes

References

- 1. Torabian, Parsa, et al. "Comparison of foveated downsampling techniques in image recognition." Journal of Computational Vision and Imaging Systems 6.1 (2020): 1-3.
- 2. Wang, Binxu, et al. "On the use of cortical magnification and saccades as biological proxies for data augmentation." arXiv preprint arXiv:2112.07173 (2021).
- 3. Sermanet, Pierre, Andrea Frome, and Esteban Real. "Attention for fine-grained categorization." arXiv preprint arXiv:1412.7054 (2014).
- 4. Esteves, Carlos, et al. "Polar transformer networks." arXiv preprint arXiv:1709.01889 (2017).
- 5. Lukanov, Hristofor, Peter König, and Gordon Pipa. "Biologically inspired deep learning model for efficient foveal-peripheral vision." Frontiers in Computational Neuroscience 15 (2021): 746204.

- \succ Methods with "–" fixations indicate no attention is used.

Conclusion

- We presented a novel graph convolutional approach to processing foveated images and incorporated it into a sequential attention architecture.
- > We showed that our approach outperforms previous foveated CNN architectures by at least 1% and a uniform CNN by 2.5%.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), grant number 2443519.

