

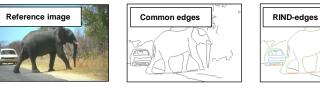
SWIN-RIND: Edge Detection for Reflectance, Illumination, Normal and Depth Discontinuity with Swin Transformer

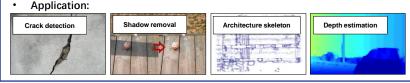
Miao Lun, Ishikawa Ryoichi, Oishi Takeshi Institute of Industrial Science, The University of Tokyo

UTokyo-IIS

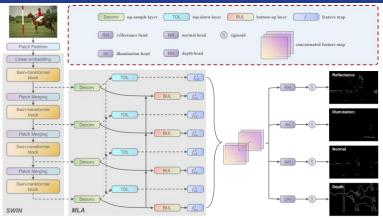
Introduction

- Edges are caused by the discontinuities in Surface-Reflectance, Illumination, Surface-Normal, and Depth (RIND).
- Reflectance edges are caused by different textures.
- Illumination edges are caused by changes in light intensity.
- Normal edges appear at the intersection of planes.
- Depth edges are caused by mutation of depth.





Proposed method



- The proposed network takes an encoder-decoder structure.
- Swin Transformer [2] extracts different levels of information.
- Multi-level feature aggregation(MLA) block integrates cues.
- · Four independent decision heads predict RIND-edges simultaneously.

Loss function & optimization Self-balancing optimization using dice loss for fine edge detection

Applied attention loss

Dice loss and self-updating parameters

• Attention Loss [3] $L_{a}(Y,G) = -\sum_{(i,j)} (G_{(i,j)} \alpha \beta^{(1-Y_{(i,j)})^{Y}} \cdot \log(Y_{(i,j)})$ $+ (1 - G_{(i,j)})(1 - \alpha) \beta^{Y_{(i,j)}^{Y}} \cdot \log(1 - Y_{(i,j)}))$

Dice Loss [4] $L_{d}(Y,G) = 1 - \frac{2 \cdot \sum_{(i,j)} Y_{(i,j)} G_{(i,j)}}{\sum_{(i,j)} Y_{(i,j)}^{2} + \sum_{(i,j)} G_{(i,j)}^{2}}$

$$\begin{aligned} \mathsf{Total Loss} \\ L_t(Y,G) &= \frac{1}{\rho^2} L_{a,r} + \frac{1}{\tau^2} L_{a,i} + \frac{1}{\varepsilon^2} L_{a,n} + \frac{1}{\mu^2} L_{a,i} \\ &+ \eta \cdot \sum L_{d,k} + \log(\rho \tau \varepsilon \mu) \end{aligned}$$

Y:Predicted edge map G:Ground truth edge map

Dataset

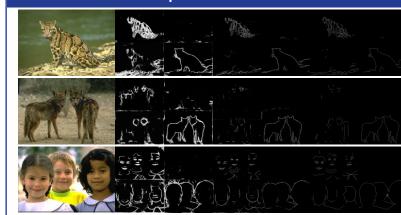
- The proposed model was trained on the BSDS-RIND dataset [1].
- BSDS-RIND is an edge detection dataset which appends RIND-edge labels based on BSDS dataset.
- An example inside the BSDS-RIND:

Reference

[1] Pu et al. (2021). RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth. *ICCV 2021*.

[2] Liu et al. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. *ICCV* 2021.

[3] Wang et al. (2018). Doobnet: Deep object occlusion boundary detection from an image. ACCV 2018.[4] Lee R Dice. (1945). Measures of the amount of ecologic association between species.



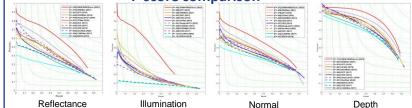
Experimental results

From left to right: Reference image, Baseline, SWIN-RIND, Ground truth. Two tables below show the details of the ablation study.

MLA	BUL	TDL	ODS	OIS	AP		La							AP
-	-	-	0.461	0.427	0.418		1	×		×			0.476 0.114	0.439
1	×	1	0.552	0.521	0.515								0.407	
		~		0.500				\checkmark					0.464	
×	×						\checkmark	\checkmark					0.561	
\checkmark	\checkmark	\checkmark	0.571	0.576	0.534		\checkmark	\checkmark	×	\checkmark	\checkmark	0.571	0.576	0.534

MLA: Multi-level feature aggregation, BUL: Bottom-up layer, TDL: Top-down layer La: Attention loss, Ld: Dice loss, SP1: Self-learning parameter $1/{\rho, \tau, \varepsilon, \mu}$ SP2: Self-learning parameter $1/{\rho, \tau, \varepsilon, \mu}$, CT: Constraint term $\log(\rho\tau\varepsilon\mu)$

F-score comparison



Conclusion & limitation

- The proposed method SWIN-RIND outperforms state-of-the-art methods both in accuracy and visual effect.
- The experiment results show an adaptive combination of attention loss and dice loss is more effective in realizing fine edge detection.
- LIM: BSDS-RIND is the only available dataset for RIND-edge training.