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• Edges are caused by the discontinuities in Surface-Reflectance, 
Illumination, Surface-Normal, and Depth (RIND).

• Reflectance edges are caused by different textures.
• Illumination edges are caused  by changes in light intensity.
• Normal edges appear at the intersection of planes.
• Depth edges are caused by mutation of depth.

F-score comparison

• The proposed network takes an encoder-decoder structure.
• Swin Transformer [2] extracts different levels of information.
• Multi-level feature aggregation(MLA) block integrates cues.
• Four independent decision heads predict RIND-edges simultaneously.

• From left to right: Reference image, Baseline, SWIN-RIND, Ground
truth. Two tables below show the details of the ablation study.

• The proposed model was trained on the BSDS-RIND dataset [1].
• BSDS-RIND is an edge detection dataset which appends RIND-edge

labels based on BSDS dataset.
• An example inside the BSDS-RIND:

• Application:

Reflectance Illumination Normal Depth

• Attention Loss [3]

Crack detection Shadow removal Architecture skeleton Depth estimation

Reference image Common edges RIND-edges

Conclusion & limitation

• The proposed method SWIN-RIND outperforms state-of-the-art
methods both in accuracy and visual effect.

• The experiment results show an adaptive combination of attention
loss and dice loss is more effective in realizing fine edge detection.

• LIM: BSDS-RIND is the only available dataset for RIND-edge training.

Common edges Reflectance Illumination Normal DepthReference image

• Dice Loss [4]

• Total Loss
Thick edges Fine edges
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Applied attention loss

Dice loss and self-updating parameters
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𝑌: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑚𝑎𝑝
𝐺:𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑒𝑑𝑔𝑒 𝑚𝑎𝑝

• Self-balancing optimization using dice loss for fine edge detection

MLA: Multi-level feature aggregation, BUL: Bottom-up layer, TDL: Top-down layer

La: Attention loss, Ld: Dice loss, SP1: Self-learning parameter 1/{ρ, τ, ε,μ}

SP2: Self-learning parameter 1/{ρ2, τ2, ε2,μ2}, CT: Constraint term log(ρτεμ)
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