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GAN Architecture
We employed the BigGAN Deep architecture as our generative model [1]. Specifically, we
utilized the implementation from the StudioGAN library1, which introduces slight modifi-
cations to the layout of residual blocks in both the generator and discriminator [2]. In the
generator’s G block, rather than dropping channels, we upsample the residual path and ap-
ply a Conv1x1 operation to ensure consistent channel numbers between the residual and
non-residual paths. Similarly, in the discriminator’s D block, we first pass the residual path
through a Conv1x1 layer to obtain the correct channel output and then downsample it. For a
visual comparison of the original BigGAN Deep blocks and the StudioGAN implementation,
refer to Figure 1.

All models underwent training for 500 epochs, employing a batch size of 192 and utiliz-
ing 3 discriminator (D) steps per generator (G) step. While our interpretation of "N D steps
per G step" differs slightly from its original formulation, our experimental findings have
shown that it leads to superior results. Specifically, instead of dividing the batch (size 192)
into N sub-batches (size 64) and training the discriminator on each sub-batch, we perform
N iterations of discriminator training on the complete batch (size 192) (refer to Figure 2).
We conjecture that this modification may yield improved outcomes on datasets smaller than
ImageNet, which is why we refrain from adopting the larger batch sizes (2048) proposed by
the authors of BigGAN, who trained the model on ImageNet. Lastly, our training set only
employed random horizontal flips as the sole form of data augmentation.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1https://github.com/POSTECH-CVLab/PyTorch-StudioGAN/
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Figure 1: BigGAN Deep blocks architectures. From left to right, the legacy Generator block,
the StudioGAN Generator block (used in our work), the legacy Discriminator block, the
StudioGAN Discriminator block (used in our work).
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Figure 2: Discrimination Steps - Legacy Vs Ours.

Dynamic Sample Filtering

The relationship between the filtering threshold of the Dynamic Sample Filtering technique
and the discarded image count, leading to a balanced dataset with the same cardinality of the
real training set, is illustrated in Figures 3, 4, 5, 6, and 7. Notably, the results demonstrate
that for the Fashion-MNIST [3] and CIFAR-10 [4] datasets, the discarded image count
remains relatively stable until a high threshold value is surpassed, while for CIFAR-100 [4],
it starts to increase exponentially even at relatively low threshold values. The paper’s findings
emphasize the significance of the Dynamic Sample Filtering technique in enhancing the
Classification Accuracy Score (CAS) [5]. However, it is crucial to cautiously validate the
threshold value to avoid performance degradation. In cases where the optimal value of this
parameter has not yet been determined, we recommend utilizing a value of 0.0.
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Figure 3: The relationship between the filtering threshold and the number of images dis-
carded for the Fashion-MNIST dataset.
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Figure 4: The relationship between the filtering threshold and the number of images dis-
carded for the CIFAR-10 dataset.
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Figure 5: The relationship between the filtering threshold and the number of images dis-
carded for the CIFAR-100 dataset.
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Figure 6: The relationship between the filtering threshold and the number of images dis-
carded for the CINIC-10 dataset.
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Figure 7: The relationship between the filtering threshold and the number of images dis-
carded for the DermaMNIST dataset.

Expansion Trick

The Expansion Trick involves expanding the input noise space instead of truncating it. This
is achieved by sampling from a normal distribution with a higher standard deviation than
that used during model training. By broadening the diversity of the input noise space, our
approach encourages the generative model to explore underrepresented regions encountered
less frequently during training. Consequently, it facilitates the generation of more diverse
and novel images, a desirable outcome in scenarios prioritizing diversity over visual fidelity.
However, as anticipated, the increased standard deviation of the input noise distribution ad-
versely impacts the quality of individual samples, as shown in Figure 8. Hence, the effective-
ness of the Expansion Trick is enhanced when employed in conjunction with sample filtering
techniques. This helps mitigate the negative effects of reduced sample quality by selecting
only the most pertinent samples for training the classifier.
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Figure 8: Images sampled for class label “Truck”, with standard deviation ranging from 1.0
to 2.0 with increments of 0.2 (fixed seed). Top: image for which a higher stddev degrades the
quality, so it will most likely be filtered. Bottom: image for which a higher stddev increases
diversity without reducing quality.

Evaluation Metrics
We investigated the potential correlation between the Classification Accuracy Score (CAS)
and commonly utilized evaluation metrics for assessing generative models. Our analysis
includes the CAS trends in relation to each specific metric, with "training checkpoints" re-
ferring to EMA versions of the generator saved at specific epochs. The CAS was compared
against the Inception Score (IS) [6], Fréchet Inception Distance (FID) [7], and Kernel Incep-
tion Distance (KID) [8]. However, as evidenced in Figures 9 and 10, no apparent correlation
was found between these metrics and the CAS. This lack of correlation can be attributed
to the limitations of traditional metrics in capturing all facets of sample quality relevant to
classification tasks. For instance, a sample with a low FID score may still be classified in-
correctly, indicating its limited usefulness for downstream applications. Likewise, the CAS
may not fully encompass the diversity and richness of generated samples that are significant
for other objectives, such as artistic image synthesis.
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Figure 9: The comparison of the Classification Accuracy Score (CAS) with Inception Score
(IS), Fréchet Inception Distance (FID), and Kernel Inception Distance (KID) for each check-
point (CIFAR-10 dataset).
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Figure 10: The comparison of the Classification Accuracy Score (CAS) with Inception Score
(IS), Fréchet Inception Distance (FID), and Kernel Inception Distance (KID) for each check-
point (CIFAR-100 dataset).
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Datasets t-SNE Embeddings

Figures 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 present t-SNE embed-
dings of all classes for the Fashion-MNIST, CIFAR-10, CIFAR-100 (10 classes),
CINIC-10 [9] and DermaMNIST [10] datasets. These t-SNE visualizations are generated
using the embeddings of these images in the feature space of the baseline classifier, specifi-
cally the ResNet-20 employed in all our experiments. The feature space of a CNN classifier
refers to the output of the network’s convolutional component. For our experiments utilizing
ResNet-20, the feature space corresponds to the output of the last AveragePooling2D layer
prior to the fully connected layers. This layer produces a tensor comprising high-level fea-
tures learned by the network from the input images. These features serve as a condensed
representation of the input images, capturing the most relevant patterns and structures for the
classification task. By leveraging the feature space as the foundation for t-SNE embeddings,
we visualize the distribution of images in a lower-dimensional space that reflects the simi-
larities and dissimilarities among their high-level features. This approach allows us to gain
insights into how the classifier clusters images from different classes and assess the quality
of the learned features in terms of their discriminative power.

Figure 11: t-SNE embedding of images from Fashion-MNIST classes, embedded in the fea-
ture space of the baseline ResNet-20 classifier. We use 500 images from both the train and
test sets, along with 500 images each generated with BigGAN. No post-processing tech-
niques have been applied.
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Figure 12: t-SNE embedding of images from Fashion-MNIST classes, embedded in the
feature space of the baseline ResNet-20 classifier. We use 500 images from both the train and
test sets, along with 500 images each generated with BigGAN. Dynamic Sample Filtering
has been applied with a threshold of 0.0.
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Figure 13: t-SNE embedding of images from Fashion-MNIST classes, embedded in the
feature space of the baseline ResNet-20 classifier. We use 500 images from both the train and
test sets, along with 500 images each generated with BigGAN. Dynamic Sample Filtering
and Expansion Trick have been applied with the optimal hyperparameters.
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Figure 14: t-SNE embedding of images from CIFAR-10 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 images from both the train and test
sets, along with 500 images each generated with BigGAN. No post-processing techniques
have been applied.
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Figure 15: t-SNE embedding of images from CIFAR-10 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 images from both the train and test
sets, along with 500 images each generated with BigGAN. Dynamic Sample Filtering has
been applied with a threshold of 0.0.
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Figure 16: t-SNE embedding of images from CIFAR-10 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 images from both the train and test
sets, along with 500 images each generated with BigGAN. Dynamic Sample Filtering and
Expansion Trick have been applied with the optimal hyperparameters.
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Figure 17: t-SNE embedding of images from CIFAR-100 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 and 100 from the train and test
sets respectively, along with 500 images each generated with BigGAN. No post-processing
techniques have been applied.



LAMPIS ET AL.: BRIDGING THE GAP 15

Figure 18: t-SNE embedding of images from CIFAR-100 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 and 100 images from the train and
test sets respectively, along with 500 images each generated with BigGAN. Dynamic Sample
Filtering has been applied with a threshold of 0.0.
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Figure 19: t-SNE embedding of images from CIFAR-100 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 and 100 images from the train and
test sets respectively, along with 500 images each generated with BigGAN. Dynamic Sample
Filtering and Expansion Trick have been applied with the optimal hyperparameters.
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Figure 20: t-SNE embedding of images from CINIC-10 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 images from both the train and test
sets, along with 500 images each generated with BigGAN. No post-processing techniques
have been applied.
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Figure 21: t-SNE embedding of images from CINIC-10 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 images from both the train and test
sets, along with 500 images each generated with BigGAN. Dynamic Sample Filtering has
been applied with a threshold of 0.0.
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Figure 22: t-SNE embedding of images from CINIC-10 classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use 500 images from both the train and test
sets, along with 500 images each generated with BigGAN. Dynamic Sample Filtering and
Expansion Trick have been applied with the optimal hyperparameters.
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Figure 23: t-SNE embedding of images from DermaMNIST classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use at most 500 and 100 images from the
train and test sets respectively, along with 500 images each generated with BigGAN. No
post-processing techniques have been applied.

Figure 24: t-SNE embedding of images from DermaMNIST classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use at most 500 and 100 images from the train
and test sets respectively, along with 500 images each generated with BigGAN. Dynamic
Sample Filtering has been applied with a threshold of 0.0.
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Figure 25: t-SNE embedding of images from DermaMNIST classes, embedded in the feature
space of the baseline ResNet-20 classifier. We use at most 500 and 100 images from the train
and test sets respectively, along with 500 images each generated with BigGAN. Dynamic
Sample Filtering and Expansion Trick have been applied with the optimal hyperparameters.
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