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A Extended Description of Robust Architectures

A few research studies have examined the impact of architectural designs on adversarial
robustness [14, 20, 38, 50], e.g., RobustArt [41] is the first comprehensive robustness bench-
mark of architectures and training techniques on ImageNet variants and Jung et al. [21]
presented the first robustness dataset evaluating a complete NAS search space and demon-
strated architectures’ impacts on robustness. Among them, Huang et al. [20] is the closest
to ours, and we thus provide a more detailed comparison with their work. Similar to our
work, Huang et al. [20] also explored the relationship among depth and width, the SE block,
and adversarial robustness through adversarially trained networks. However, our work is
markedly different and enhanced in the following aspects:
1. Huang et al. assigned a fixed depth and width ratio only for the 3-stage WRN on CIFAR-

10. It was an open research question as to how to extrapolate this fixed ratio to networks
with more than three stages, such as the commonly used 4-stage residual networks for
ImageNet [15, 27, 36]. In contrast, we provide a flexible compound scaling rule that does
not place a restriction on the total number of stages, and we verify its generalizability and
optimality through extensive experiments on CIFAR-10, CIFAR-100, and ImageNet.

2. Huang et al. proposed a specific residual block design using hierarchically aggregated
convolution and residual SE. However, we show that such a residual SE is unnecessary
due to the negative correlation between reduction ratio r and robustness. Furthermore,
our design principles are applicable to both basic and bottleneck residual block designs.
This flexibility is advantageous since the basic block is commonly used on CIFAR and
the bottleneck block is widely deployed on ImageNet to reduce computational complex-
ity [15, 16].

3. Huang et al. found that the adversarial robustness of models with smooth activation func-
tions was sensitive to AT hyperparameters, and that removing BN affine parameters from
weight decay was crucial; if the BN affine parameters were not removed, smooth acti-
vation functions did not improve performance beyond that of ReLU. This finding con-
tradicts the prevailing consensus in the literature that smooth activation functions sig-
nificantly improve robustness [2, 51]. In our research, we also find that using smooth
activation functions is beneficial to robustness, and removing the BN affine parameters
from weight decay is the correct implementation supported by Van [42] and multiple
popular code bases and forums.1,2

4. Finally, Huang et al. only explored on CIFAR-10 and CIFAR-100, leaving no evidence
that these findings will extrapolate to the large-scale ImageNet. In contrast, we verified
the generalization of all our design principles through extensive experiments over a wide
spectrum of dataset scales, AT methods, model parameters, and network design spaces.
A parallel line of related studies leverages NAS to search for optimal robust architectures.

Guo et al. [14] explored two types of block topologies within the DARTS search space.
Subsequent work regulated the NAS loss formulation through the smoothness of the input
loss landscape [32]. These compute-intensive NAS frameworks mainly focus on searching
for block topology while leaving other factors to manual design, e.g., activation, depth, and
width. Furthermore, most searches are conducted on CIFAR-10 since both NAS and AT are
already computationally expensive. Besides, current research shows that the NAS-optimized
architecture depends on the dataset used [24], thus hindering explorations of network design
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principles that deepen our understanding and generalize to new settings [36]. In Sec. C,
we also compare our results with NAS-based networks and demonstrate that our robustified
networks exhibit higher robustness.

B Additional Details on Architectural Design Principles

B.1 Full Results for Stem Stage and Residual Block Designs

Here we provide the full results in Table 4 showcasing how various configurations of stem

stage and residual block designs impact the clean and adversarial accuracies over the ResNet-
50 baseline, extending the result highlights presented in Figure 2b of the main paper.

For the stem stage, the convolution stem with postponed downsampling operation outper-
forms the patchify stem. In the patchify stem, we observe a consistent performance improve-
ment while decreasing the stride, and the 4⇥ 4 patch with the largest overlapping between
neighboring patches (Patch 4, Stride 1) performs almost on par with the postponed down-
sampling. Finally, decreasing the width from 64 (ResNet-50) to 32 lowers the accuracy due
to fewer model parameters, while increasing the width from 64 to 96 significantly boosts
both clean and adversarial accuracies with a negligible 0.01M increase in total parameters.

For the residual block design, we find that a straightforward application of SE markedly
increases all PGD and clean accuracies compared to ResNet-50. In terms of activation, re-
ducing the number of activation layers does not contribute to adversarial robustness. There-
fore, we preserve the activations along with all convolutions. Besides, we find that non-
parametric smooth activation functions exhibit greater robustness compared to both ReLU
and their parametric counterparts.

Table 4: Full results showcasing how various configurations of stem stage and residual block designs

impact the clean and adversarial accuracies over the ResNet-50 baseline, extending the result highlights
already presented in Figure 2b of the main paper. All models trained with Fast-AT [46] and evaluated
on full ImageNet validation set.

Config Clean (%) PGD10-2 (%) PGD10-4 (%) PGD10-8 (%)

ResNet-50 (baseline) 56.05 42.81 30.59 12.62

Stem stage

Postponed downsampling 57.08 +1.03 45.19 +2.38 33.08 +2.49 14.50 +1.88
Patch 4, Stride 4 55.40 -0.65 43.45 +0.64 31.68 +1.09 13.80 +1.18
Patch 2, Stride 2 56.38 +0.33 44.21 +1.40 31.91 +1.32 13.48 +0.86
Patch 4, Stride 3 55.75 -0.30 44.54 +1.73 32.41 +1.82 13.74 +1.12
Patch 4, Stride 2 56.58 +0.53 44.60 +1.79 32.83 +2.24 14.03 +1.41
Patch 4, Stride 1 56.72 +0.67 45.06 +2.25 33.20 +2.61 14.45 +1.83
Stem width = 32 55.89 -0.16 41.64 -1.17 29.73 -0.86 13.25 +0.63
Stem width = 96 57.29 +1.24 44.55 +1.47 32.06 +1.47 13.74 +1.12

Residual block design

SE (r = 4) 57.83 +1.78 45.09 +2.28 32.64 +2.05 14.01 +1.39
ReLU-ReLU-0 51.54 -4.51 38.69 -4.12 27.05 -3.54 10.94 -1.68
ReLU-0-ReLU 53.91 -2.14 41.22 -1.59 29.62 -0.97 12.30 -0.32
0-ReLU-ReLU 54.81 -1.24 42.10 -0.71 30.34 -0.25 12.86 +0.24
0-0-ReLU 51.03 -5.02 39.12 -3.69 28.15 -2.44 12.09 -0.53
0-ReLU-0 47.18 -8.87 34.85 -7.96 24.12 -6.47 9.51 -3.11
ReLU-0-0 44.21 -11.84 32.34 -10.47 22.24 -8.35 8.77 -3.85
GELU 57.48 +1.43 45.05 +2.24 33.12 +2.53 14.80 +2.18
SiLU 58.19 +2.14 46.21 +3.40 34.07 +3.48 14.68 +2.06
PReLU 55.81 -0.27 42.52 -0.29 30.38 -0.21 12.76 +0.14
PSiLU 56.38 +0.33 44.90 +2.09 33.76 +3.17 15.40 +2.78
PSSiLU 57.43 +1.38 44.44 +1.63 32.22 +1.63 13.71 +1.09
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B.2 Adversarial Robustness Negatively Correlated with SE Reduction

Ratio r on CIFAR-10

Table 5: A hyperparameter sweep of the SE block reduction ratio r = {2,4,8,16,32,64} on CIFAR-
10. These results show that adversarial robustness is negatively correlated with r, and when r � 32,
the accuracy is inferior to the baseline WRN-22-10, supporting our discovery presented in Sec. 4.3.1.
Both AA and 20-step PGD (PGD20) use the same maximum perturbation `•,e = 8/255.

Config Clean (%) AA (%) PGD20 (%)

WRN-22-10 83.82 48.38 52.64

WRN-22-10 (r = 2) 86.95 +3.13 49.14 +0.76 53.48 +0.84
WRN-22-10 (r = 4) 86.75 +2.93 49.13 +0.75 53.52 +0.88
WRN-22-10 (r = 8) 86.48 +2.66 49.11 +0.73 53.39 +0.75
WRN-22-10 (r = 16) 84.97 +1.15 48.89 +0.51 53.04 +0.40
WRN-22-10 (r = 32) 83.61 -0.21 48.20 -0.18 52.24 -0.40
WRN-22-10 (r = 64) 82.90 -0.92 47.44 -0.94 51.43 -1.21

C Evaluations on CIFAR-10 & CIFAR-100

This section presents the complete results of our robustified architectures in Table 6 and pro-
vides a systematic comparison to SOTA adversarially trained Transformers and NAS-based
networks in Table 7, extending the result highlights presented in Sec. 5.2 in the main paper.
As the AT recipes for CNNs and Transformers are not compatible with each other, we do
not retrain the Transformers and instead, directly extract the results from the literature. In
addition, the AT recipe for Transformers requires multiple training tricks built on SAT to
boost robustness, e.g., attention random dropping [31], perturbation random masking [31],
e-warmup [6], and larger weight decay [6]. Despite employing all these tricks in training
Transformers, our Ra WRN-34-12 trained with “Diff. 1M” is significantly more robust
than Swin-B and cross-covariance image Transformers (XCiT)-L12 on both CIFAR-10 and
CIFAR-100 even with fewer total parameters. We also compare to NAS-based networks:
our Ra WRN-22-10 is significantly more robust than RobNet-large-v2 [14] and performs
on par with AdvRush [32] using the same TRADES [54] AT method but with fewer total
parameters. Lastly, we compare our robust architectures with Huang et al. [19], who have
also studied the relationship between robustness and depth and width, and proposed a recon-
figured version of WRN-34-12 called WRN-34-R. By using the same SAT methods, both
Ra WRN-34-12 and WRN-34-R show greater robustness than the baseline WRN-34-12,

but our Ra WRN-34-12 is 1.75 pp and 0.69 pp higher than WRN-34-R in terms of AA and
PGD accuracies, respectively.
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Table 6: Complete results of adversarial robustness on CIFAR-10 and CIFAR-100 against AA and
20-step PGD (PGD20) with the same maximum perturbation `•,e = 8/255. Applying our principles
leads to a consistent 1–3 pp robustness gain across AT methods, parameter budgets, and design spaces,
boosting even the SOTA “Diff. 1M” and “Diff. 50M” AT methods proposed by Wang et al. [45]. This
table extends Table 2 in the main paper by including the results for WRN-22-10.

#Param. Method Model CIFAR-10 CIFAR-100
Clean (%) AA (%) PGD20 (%) Clean (%) AA (%) PGD20 (%)

26M

SAT
ResNet-50 84.05 49.97 54.37 55.86 23.78 27.48
Ra ResNet-50 84.91 +0.86 50.94 +0.97 55.19 +0.82 56.38 +0.52 24.99 +1.21 28.84 +1.36

TRADES
ResNet-50 82.26 49.91 54.50 56.00 25.05 29.91
Ra ResNet-50 82.80 +0.54 51.23 +1.32 55.44 +0.94 56.29 +0.29 25.83 +0.78 31.87 +1.96

MART
ResNet-50 77.98 47.17 52.70 53.18 25.35 30.79
Ra ResNet-50 79.60 +1.62 49.19 +2.02 56.47 +3.77 53.68 +0.50 26.97 +1.62 32.81 +2.02

27M
SAT

WRN-22-10 83.82 48.38 52.64 56.79 23.46 27.08
Ra WRN-22-10 84.27 +0.45 51.30 +2.92 55.42 +2.78 57.34 +0.55 24.27 +0.81 28.64 +1.56

TRADES
WRN-22-10 81.81 51.06 55.21 55.48 23.50 29.60
Ra WRN-22-10 82.27 +0.46 51.71 +0.65 56.20 +0.99 55.55 +0.07 24.91 +1.41 29.78 +0.18

37M

SAT
WRN-28-10 85.44 48.45 53.13 60.49 23.64 27.47
Ra WRN-28-10 85.52 +0.08 51.96 +3.51 56.22 +3.09 59.09 -1.40 25.14 +1.50 29.27 +1.80

TRADES
WRN-28-10 83.86 51.79 55.69 55.21 25.47 29.34
Ra WRN-28-10 83.29 -0.57 52.10 +0.31 56.31 +0.62 55.38 +0.71 25.68 +0.21 29.41 +0.07

MART
WRN-28-10 82.83 50.30 57.00 51.31 25.78 30.06
Ra WRN-28-10 82.85 +0.02 50.81 +0.51 57.35 +0.35 51.61 +0.30 26.11 +0.33 30.82 +0.76

Diff. 1M
WRN-28-10 90.61 61.66 66.43 67.26 34.26 39.29
Ra WRN-28-10 91.32 +0.71 65.11 +3.45 68.93 +2.50 69.03 +1.77 37.24 +2.98 41.59 +2.30

67M
SAT

WRN-34-12 85.92 49.35 53.05 59.08 23.69 27.05
Ra WRN-34-12 86.50 +0.58 51.78 +2.43 56.04 +2.99 59.46 +0.38 25.18 +1.49 29.49 +2.44

Diff. 1M
WRN-34-12 91.11 62.83 67.53 68.40 35.67 40.33
Ra WRN-34-12 91.75 +0.64 65.71 +2.88 69.67 +2.14 69.75 +1.35 37.73 +2.06 42.16 +1.83

267M

SAT
WRN-70-16 86.26 50.19 53.74 60.26 23.99 27.05
Ra WRN-70-16 86.72 +0.46 52.13 +1.94 56.49 +2.75 60.42 +0.16 25.17 +1.18 29.46 +2.41

Diff. 1M
WRN-70-16 91.82 65.02 69.10 70.10 37.77 41.95
Ra WRN-70-16 92.16 +0.34 66.33 +1.31 70.37 +1.27 70.25 +0.15 38.73 +0.96 42.61 +0.66

Diff. 50M
WRN-70-16 93.25 70.69 73.89 - - -
Ra WRN-70-16 93.27 +0.02 71.07 +0.38 75.28 +1.39 - - -

Table 7: A systematic comparison to SOTA adversarially trained Transformers and NAS-based ar-
chitectures with adversarial robustness on CIFAR-10 and CIFAR-100 against AA and 20-step PGD
(PGD20) with the same maximum perturbation `•,e = 8/255. Our robustified architectures (prefixed
by Ra ) exhibit greater robustness (highlighted in bold) than all Transformers and NAS-based archi-
tectures compared. The “Diff. 1M” results are extracted from Table 6.

Method Model #Param. CIFAR-10 CIFAR-100
Clean (%) AA (%) PGD20 (%) Clean (%) AA (%) PGD20 (%)

Diff. 1M
Ra WRN-28-10 37M 91.32 65.11 68.93 69.03 37.24 41.59

Ra WRN-34-12 67M 91.75 65.71 69.67 69.75 37.73 42.16

Ra WRN-70-16 267M 92.16 66.33 70.37 70.25 38.73 42.61

Mo et al. [31]

DeiT-S 22M 83.04 48.34 52.52 - - -
Swin-S 50M 84.46 46.17 50.02 - - -
ViT-B/16 86M 84.90 50.03 53.80 - - -
Swin-B 88M 84.16 47.50 51.47 - - -

Debenedetti et al. [6]
XCiT-S12 26M 90.06 56.14 - 67.34 32.19 -
XCiT-M12 46M 91.30 57.27 - 69.21 34.21 -
XCiT-L12 104M 91.73 57.58 - 70.76 35.08 -

TRADES RobNet-large-v2 [14] 33M 84.57 47.48 52.79 55.27 23.69 29.23
TRADES AdvRush (7@96) [32] 33M 84.65 52.08 56.23 55.40 25.27 29.40
SAT WRN-34-R [19] 68M 87.85 50.03 55.35 61.33 25.20 29.02
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D Evaluations on ImageNet

This section presents an extended discussion of the ImageNet results in Sec. 5.3 in the main
paper. Table 8 provides a controlled comparison of our robustified architectures to SOTA
CNNs and Transformers using Fast-AT method [46]. We present the robustified ResNet-50,
ResNet-101, and WRN-101-2 and make the following observations:
1. Our robustified architectures consistently demonstrate a 4–9 pp gain in robustness across

different model parameters and design spaces. Furthermore, increasing the total number
of parameters in general leads to higher robustness.

2. Under a fixed model capacity, our Ra ResNet-50 outperforms the baseline ResNet-50
and ResNeXt-50 32⇥4d [52], and Ra ResNet-101 outperforms ResNet-101 and RegNetX-
8GF [36].

3. Compared to models with larger parameters, our Ra ResNet-50 is more robust than
ResNet-152 and WRN-50-2, and even WRN-101-2 despite having 4.85⇥ fewer parame-
ters. Similarly, our Ra WRN-101-2 outperforms the baseline WRN-101-2 and achieves
SOTA performance under the Fast-AT method.

4. Transformers such as Swin-T [26] and Transformer-based architectures such as ConvNeXt-
T [27] exhibit lower robustness when employing Fast-AT. The phenomenon can be at-
tributed to the differences in optimizers, learning rates, and data augmentation, where
most Transformer-related architectures use AdamW [28], tiny learning rates, and heavy
data augmentation.
Then, we provide a systematic comparison of our SAT-trained robust architectures with

CNNs and Transformers that utilize specifically optimized AT methods in Table 9. By apply-
ing our design principles, the robustified architecture achieves a similar or even superior level
of robustness compared to the Transformers that utilize additional training tricks to enhance
their robustness. For example, under similar total parameters, ResNet-50 and ResNet-101
are less robust than XCiT-S12 and XCiT-M12, respectively, but the robustified Ra ResNet-
50 and Ra ResNet-101 show higher clean and AA accuracies. Additionally, there is no sign
of saturation when scaling up the total parameters, as Ra WRN-101-2 remains markedly
more robust than XCiT-L12 with the same 104M parameters.
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Table 8: Our robustified architectures ( Ra ) consistently demonstrate a 4–9 pp gain in robustness over
SOTA CNNs and Transformers using Fast-AT method [46], across different model parameters, design
spaces, and attack budgets.

Model #Param. Clean (%) PGD10-2 (%) PGD10-4 (%) PGD10-8 (%)

Ra ResNet-50 26M 62.02 51.47 39.65 18.97
Ra ResNet-101 46M 64.40 53.97 42.06 20.98
Ra WRN-101-2 104M 66.08 55.52 43.81 22.50

SqueezeNet 1.1 1M 0.10 0.10 0.10 0.10
MobileNet V2 4M 41.60 31.23 21.89 8.94
EfficientNet-B0 5M 48.78 37.74 26.90 10.92
ShuffleNet V2 2.0⇥ 7M 49.99 0.01 0.01 0.02
DenseNet-121 8M 52.29 40.06 28.72 12.23
ResNet-18 12M 46.59 35.05 24.64 9.95
RegNetX-3.2GF 15M 57.26 45.74 33.85 15.37
RegNetY-3.2GF 19M 59.15 47.09 34.82 15.51
EfficientNetV2-S 21M 57.64 45.89 33.48 14.03
ResNeXt-50 32⇥4d 25M 57.33 45.46 33.08 14.45
ResNet-50 26M 56.09 42.66 30.43 12.61
Swin-T 28M 38.83 28.08 18.49 6.20
ConvNeXt-T 29M 21.35 15.39 10.51 4.07
DenseNet-161 29M 59.80 47.60 35.35 15.77
EfficientNet-B5 30M 55.90 44.80 33.26 14.53
RegNetY-8GF 39M 63.61 52.26 40.15 19.21
RegNetX-8GF 40M 60.26 48.98 36.89 17.22
ResNet-101 45M 58.04 45.72 33.90 15.93
ResNet-152 60M 61.55 48.50 35.85 15.87
WRN-50-2 69M 60.66 46.99 34.10 15.37
WRN-101-2 127M 61.63 49.10 36.23 16.14

Table 9: By applying our design principles, the robustified architecture achieves a similar or even
superior level of robustness compared to the Transformers that utilize additional training tricks to
enhance their robustness. The Ra results are extracted from Table 3 in the main paper.

Model #Param. Clean (%) AA (%) PGD100-2 (%) PGD100-4 (%) PGD100-8 (%)

Ra ResNet-50 26M 70.17 44.14 60.06 47.77 21.77
Ra ResNet-101 46M 71.88 46.26 61.89 49.30 23.01
Ra WRN-101-2 104M 73.44 48.94 63.49 51.03 25.31

PoolFormer-M12 [6] 22M 66.16 34.72 - - -
DeiT-S [2] 22M 66.50 35.50 - 40.32 -
ResNet50 + GELU [2] 26M 67.38 35.51 40.27 - -
ResNet50 + DiffPure [33] 26M 67.79 40.39 - - -
XCiT-S12 [6] 26M 72.34 41.78 - - -
ConvNeXt-T [38] 29M 67.60 41.60 - - -
XCiT-M12 [6] 46M 74.04 45.24 - - -
WRN-50-2 [37] 69M 68.41 38.14 55.86 41.24 16.29
WRN-50-2 + DiffPure [33] 69M 71.16 44.39 - - -
Vit-B/16 [31] 86M 69.10 34.62 - 37.52 -
Swin-B [31] 88M 74.36 38.61 - 40.87 -
XCiT-L12 [6] 104M 73.76 47.60 - - -
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E Architecture Details

Table 10 contains the details of all the robustified architectures mentioned in the paper. For
depth and width, we present the list of total depths and widths in each stage and compute
the corresponding WD ratio. For the stem stage, we use the convolution stem stage with
postponed downsampling operation and increase the output channels to 96. Regarding the
design of the residual block, we append the SE block (r = 4) to the 3⇥3 convolution layer
and replace ReLU with SiLU.

Table 10: Details of all the robustified architectures mentioned in the paper.
Model #Param. Depth Width WD ratio Stem width SE Activation

Ra ResNet-50 26M [5, 8, 13, 1] [36, 72, 140, 270] 8.99 96 r = 4 SiLU
Ra WRN-22-10 27M [13, 15, 2] [120, 240, 480] 12.62 96 r = 4 SiLU
Ra WRN-28-10 37M [14, 16, 3] [128, 256, 512] 12.57 96 r = 4 SiLU
Ra ResNet-101 46M [7, 11, 18, 1] [42, 84, 166, 328] 7.62 96 r = 4 SiLU
Ra WRN-34-12 67M [18, 20, 5] [144, 288, 576] 11.20 96 r = 4 SiLU
Ra WRN-101-2 104M [7, 11, 18, 1] [64, 128, 252, 504] 11.59 96 r = 4 SiLU
Ra WRN-70-16 267M [30, 31, 10] [216, 432, 864] 10.57 96 r = 4 SiLU
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Figure 3: Visualization of the Fast-AT curves of individual architectural modifications (Table 1), and
the SAT curves of the final robustified model (Table 3). We observed that a lower training loss leads to
a higher robustness as expected and no catastrophic overfitting occurs during training.


