A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation

Francesco Galati, Daniele Falcetta, Rosa Cortese, Barbara Casolla, Ferran Prados, Ninon Burgos, Maria A. Zuluaga

Context & Objectives

Anatomical differences between arteries and veins results in a *large domain gap*.

Domain Adaptation (DA) tackles the problem of distribution shifts across image modalities. However:

- **Small objects** are not preserved during translation.
- Vessels are merged with the background.
- Label-altering features are erroneously translated.
 - Vessels are changed in size or position.
- Arteries and veins are *not linked* during translation.
 - Vessels are left untransformed, thus not segmented.

We introduce a semi-supervised DA framework for segmenting brain veins using primarily annotated angiographies. We combine image translation and semantic segmentation by relying on a combined and disentangled latent representation.

Method

Setup: Images x_i from source domain S and target domain \mathcal{T} are fed into our model, composed of: • a generator *G* • a discriminator *D* • an encoder *E*

Fig 1. Two-phase training algorithm.

The modules are trained in two separate phases.

Phase 1: *G* maps latent vectors $w_i \in \mathcal{W}$ into an x_i , in *S* or \mathcal{T} . *D* discriminates real and fake samples.

Disentanglement guarantees translation between the two domains. Hence, E can handle individual features independently from others, discovering high-level mappings that differentiate between various vessel characteristics. This allows to alter vessel intensities, while preserving compromising volume-related and vessel-related properties, such as image spacing or vessel arrangement.

Phase 2: *E* reconstructs or transforms an image in S and \mathcal{T} . G has a label-synthesis branch for segmentation.

Fig 2. Phase 2 of the training algorithm alternating intra-domain (2.1) and inter-domain (2.2 and 2.3) configurations

label-preserving

Experiments & Results We used *time-of-flight MR* angiographies as S, and susceptibility weighted imaging venographies as \mathcal{T} .

Method*	Brain Dice	Vessels Dice	Vessels clDice
SIFA	91.5 ± 0.4	0.8 ± 0.2	0.8 ± 0.2
SynthSeg	79.6 ± 3.8	37.3 ± 4.4	48.2 ± 4.7
CS-CADA	91.5 ± 0.8	51.4 ± 1.7	58.0 ± 2.8
DCDA	-	4.5 ± 0.4	$3.9 \pm 0.2)$
Sato	-	44.2 ± 7.2	50.0 ± 6.7
Ours	97.5 ± 0.2	70.4 ± 2.4	74.8 ± 2.4

Fig. 3. Visual comparison.

Conclusions

- primarily annotations from arterial images.
- **Optimized** cycle-based network, essential components, G and E.
- after Phase 1
- Code freely available:

Accurate segmentation of 3D brain vessels using

counting two

Two-phase learning algorithm, guaranteeing that only D is involved with adversarial training, and discarded

