

Learnable Data Augmentation for One-Shot **Unsupervised Domain Adaptation** Julio Ivan Davila Carrazco, Pietro Morerio, Alessio Del Bue, Vittorio Murino

¹ Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy ² Department of Computer Science and Technology, Bioengineering, Robotics and Systems Engineering, University of Genova, Genoa, Italy ³ Department of Marine, Electrical, Electronic and Telecommunication Engineering, University of Genoa, 16126, Genoa, Italy ⁴ Department of Computer Science, University of Verona, Ca' Vignal 2, Strada Le Grazie 15, 37134 Verona, Italy {julio.davila, pietro.morerio, alessio.delbue, vittorio.murino}@iit.it

Problem formulation

Domain adaptation methods focus typically on aligning features of both domains in a share feature space. However, the One-Shot setting makes this impossible as there are not enough target samples to pull both domains together. **Feature space**

Our Solution

LearnAug-UDA employs a data augmentation approach by exploiting style transfer to generated samples with perceptual similarities to the single target sample. As a result, the gap between source and target domains is reduced.

Source sample **Augmented source samples Target sample**

The optimization of the classifier and the augmentation module is split in two steps. An extra reconstruction loss can be added to improve the learning process of the Augmentation module.

 τ_{ϕ}

The Share Encoder exploits a **Mixup** inspired data augmentation approach where the resulting feature maps contain characteristics of both domains.

The Disentangle Encoders intuition is that different domains exhibit shared and domain-specific characteristics.

Target

samples

Quantitative results

Model	Туре	R -> C	R -> P	R -> S	P -> C	P -> R	C -> S	S -> P	Average
Source only	-	56.59	56.79	46.25	55.55	66.20	52.07	44.81	54.04
TeachAugment [1]	-	53.84	56.70	46.70	50.40	58.64	50.52	44.89	51.67
ASM [2]	One-Shot	39.74	46.39	31.37	4.31	5.87	37.12	19.67	26.35
TOS-UDA [3]	One-Shot	58.11	58.57	49.87	54.24	62.72	52.88	47.94	54.90
LearnAug-UDA (SE)	One-Shot	49.89	<mark>57.52</mark>	39.07	51.55	58.08	37.47	42.09	47.95
LearnAug-UDA (DE + RL)	One-Shot	56 <mark>.74</mark>	61.02	47.03	54.24	69.06	53.42	52.95	56.35
LearnAug-UDA (SE)	Few-Shot (3)	57.06	<mark>61</mark> .95	49.18	52.52	66.79	51.69	50.08	55.61
LearnAug-UDA (DE + RL)	Few-Shot (3)	57.96	62.43	47.95	56.70	69.59	55.37	54.58	57.80

Classification accuracy of the LearnAug-UDA method on DomainNet for seven DA tasks.

Qualitative results

Source samples

Augmented source samples after training with LearnAug-UDA and only one target sample.

1 - Suzuki, Teppei. "Teachaugment: Data augmentation optimization using teacher knowledge." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. 2 - Luo, Yawei, et al. "Adversarial style mining for one-shot unsupervised domain adaptation." Advances in neural information processing systems 33 (2020): 20612-20623. 3 - Carrazco, Julio Ivan Davila, et al. "Target-Driven One-Shot Unsupervised Domain Adaptation." International Conference on Image Analysis and Processing. Cham: Springer Nature Switzerland, 2023.