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1 Introduction
In this supplementary material, we expand the information presented for our proposed method
LearnAug-UDA. In section 2, we describe the network configuration for our Augmentation
Module (AUM). In section 3, we present a qualitative comparison of the augmented samples
synthesized by our AUM and the baselines. In section 4, we expand the results presented for
VisDA [4].

2 Encoder-Decoder description
Our proposed approach employs augmented samples that display perceptual similarities with
the Target domain. These augmented samples are generated via an Augmentation module
(AUM) which exploits style-transfer techniques to learn. We present two distinct versions of
AUM, both of them based on an Encoder-Decoder architecture. The first version, the Shared
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Encoder (SE), consists of one encoder and one decoder architecture where the conditioning
is done in the bottleneck via mixup [6]. The second version, the Disentangled Enconder
(DE), consists of two encoders, one bottleneck module which mixes the embeddings from
the encoders, and one decoder which synthesizes the augmented sample. In both versions,
i.e. SE and DE, we make use of an encoder based on UNIT’s encoder [2]. For the decoder
network, we based our architecture on UNIT’s generator. Unlike UNIT, we change the
deconvolutional layers of the decoder to an upsampling plus convolutional layer to minimize
the Checkerboard artifacts on the augmented samples. Finally, the Bottleneck module is
a convolutional block similar to the one used by the encoder. In Table 1, we present the
network architecture for the encoder, the decoder, and the bottleneck networks.

Table 1: Network architecture for the Augmentation Module. The Shared Encoder and the
Disentangled Encoders shared the same configurations for their respectives encoders.

Layer Encoder
1 Conv (channels=64, kernel size=7, stride=2), Leaky ReLU
2 Conv (channels=128, kernel size=4, stride=2), Leaky ReLU
3 Conv (channels=256, kernel size=4, stride=2), Leaky ReLU
4 Residual block (channels=256, kernel size=3, stride=1)
5 Residual block (channels=256, kernel size=3, stride=1)
6 Residual block (channels=256, kernel size=3, stride=1)
7 Residual block (channels=256, kernel size=3, stride=1)
Layer Decoder
1 Residual block (channels=256, kernel size=3, stride=1)
2 Residual block (channels=256, kernel size=3, stride=1)
3 Residual block (channels=256, kernel size=3, stride=1)
4 Residual block (channels=256, kernel size=3, stride=1)
5 Upsampling (Bilinear), Conv (channels=128, kernel size=3, stride=1), Leaky ReLU
6 Upsampling (Bilinear), Conv (channels=128, kernel size=3, stride=1), Leaky ReLU
7 Conv (channels=3, kernel size=3, stride=1), Sigmoid
Layer Bottleneck
1 Conv (channels=256, kernel size=7, stride=1), ReLU

3 Qualitative comparisons
In this section, we present a comparison between the diverse augmented samples generated
by our method and the baselines, i.e. ASM[3], TeachAugment[5], and TOS-UDA[1]. To
facilitate a comprehensive comparison, all the methods were trained using the same target
samples except for TeachAugment, i.e. TeachAugment does not requires target data.

3.1 DomainNet (1 Target)
In Figure 1, we illustrate a set of augmented samples synthesized by our proposed approach
and the selected baselines. The augmeted samples are synthesized for the DA task of Sketch
to Painting of DomainNet. By choosing this DA task, we are able to display the range of the
possible augmentations that each methods is capable of. The augmented samples of TOS-
UDA and TeachAugment are not capable of properly represent the color spectrum of the
target image as they only work with fixed transformations. For ASM, its augmented samples

Citation
Citation
{Zhang, Cisse, Dauphin, and Lopez-Paz} 2017

Citation
Citation
{Liu, Breuel, and Kautz} 2017

Citation
Citation
{Luo, Liu, Guan, Yu, and Yang} 2020

Citation
Citation
{Suzuki} 2022

Citation
Citation
{Carrazco, Kadam, Morerio, Bue, and Murino} 2023



J.I.D. CARRAZCO ET AL.: LEARNABLE DATA AUGMENTATION FOR ONE-SHOT UDA 3

Figure 1: Qualitative comparison between our proposed approach and the selected baselines.
(SE) refers to Shared encoder, while (DE) represents the Disentangled encoders. (AvgP)
indicates the use of average pooling by the Style Alignment module, and (RL) specifies a
model trained with the reconstruction loss.

display a perceptual similarity closer to target. However, ASM utilizes a pretrained module
(RAIN) on WikiArts which results in an advantage when evaluating this specific DA task
(Sketch to Painting). ASM may not have the same results for other domains. Furthermore,
our augmented samples are generated by the Augmentation module which does not require
pretraining to synthesize augmented samples with high perceptual similarity to the target.

3.2 Method ablations
In Figure 2, we present different augmented samples that were synthesized using different
ablations of the Augmentation module (AUM). For this comparison, we trained our proposed
method using three target samples (see Fig. 2 Target). These augmented samples are synthe-
sized for the DA task of Painting to Real of DomainNet. In Table 2, we present the reported
accuracies for this specific DA task to allow a better comparison of the augmented samples.
Now, the presented images clearly demonstrate that applying the average pooling operation
helps to smooth out hard details that are transferred from the target samples. Furthermore,
the Disentangled encoders (DE) are capable of synthesizing images with less artifacts than
the Shared encoder (SE), i.e. the augmented samples are less noisy therefore it obtains a
better performance. Finally, introducing the reconstruction loss (RL) into the process al-
lows the AUM to disentangle better content and style. Thus, the style encoder is capable of
transferring better the characteristics of the Target domain.

Table 2: Reported accuracies for the DA task of Painting to Real for DomainNet. (SE) refers to the
Shared encoder, while (DE) is the Disentangled encoders. (AvgP) indicates the use of average pooling
by the Style Alignment module, and (RL) specifies a model trained with the reconstruction loss.

SE SE+AvP DE DE+AvP DE+AvP+RL
Accurary 64.32 ± 4.42 66.21 ± 0.66 66.53 ± 1.70 69.11 ± 0.61 69.59 ± 0.41

4 VisDA results
In Table 3, we present the results for VisDA [4]. The results are obtained after perform-
ing five experiments for each of the methods. The target for each experiment was selected
randomly. We present mean accuracy over all the class and their corresponding standard
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Figure 2: Qualitative comparison between different ablations of our proposed approach.

deviations. The results indicates that VisDA is a more challenging DA benchmark. The
presence of large standard deviation values, particularly in certain classes, suggests that the
quality of the selected target has a profound effect on the synthesized samples. However,
upon observing the mean accuracy and its standard deviation, we can conclude that the pro-
posed method consistently performs well.
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