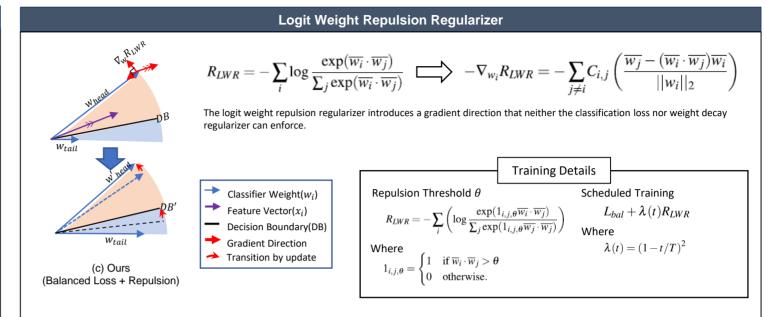


Novel Regularization via Logit Weight Repulsion for Long-Tailed Classification


BMV(

TaeGil Ha, SeulKi Park, Jin Young Choi
Department of Electrical and Computer Engineering, Seoul National University
clfdvdmlarnl@snu.ac.kr. seulki.park@snu.ac.kr. ivchoi@snu.ac.kr

- In scenarios where classes have imbalanced distributions, logit weight vectors sharing similar class features tend to influence each other, leading to subpar performance in the tail class.
- Balanced loss seeks to correct the skewed norm of logit weight vectors, alleviating bias in favor of the head class. However, it introduces more pronounced pulling gradients compared to standard cross-entropy, which can negatively impact the performance of the head class.
- To address this, we aim to create repulsion between logit weight vectors, ensuring a clear separation between them. This strategy enhances the performance of both the head and tail classes simultaneously.

Problematic Behavior of Balanced Loss Classifier Weight(w_i) Feature $Vector(x_i)$ Decision Boundary(DB) **Gradient Direction** Transition by update Region between logit vectors of head class shrinks by balanced w_{tail} Hard example pulls logit vectors of confusing sample which (b) Balanced Loss Softmax Loss shrinks region between logit (Softmax + Adjustment) vectors $L_{\text{bal}} = -C_i \log \frac{\exp(w_i \cdot x_i + \delta_i)}{\sum_i \exp(w_j \cdot x_i + \delta_{i,j})} + \lambda_{wd} ||w_i||_2^2$ All gradient terms are perpendicular to the logit weight direction or feature direction $+C_{i}\nabla_{w_{i}}\delta_{i}-C_{i}\sum_{i}\nabla_{w_{i}}\delta_{i,j}\frac{\exp\left(w_{j}\cdot x_{i}+\delta_{i,j}\right)}{\sum_{j}\exp\left(w_{j}\cdot x_{i}+\delta_{i,j}\right)}-2\lambda_{wd}w_{i}$

Experiments

Compatibility with Various Balanced Losses

Methods	All	Few	Medium	Many
CE-DRW [5]	47.6	28.0	44.9	57.6
$+R_{LWR}$	50.4(+2.8)	30.0(+2.0)	47.7(+2.8)	60.4(+2.8)
BS [31]	48.7	24.0	46.2	60.5
$+R_{LWR}$	51.5(+2.8)	30.7(+6.7)	49.2(+3.0)	62.6(+2.1)
Focal [20]	38.0	11.2	31.0	56.3
$+R_{LWR}$	41.0(+3.0)	13.7(+2.5)	34.1(+3.1)	58.6(+2.3)
Logit Adjustment (LA) [26]	48.0	29.1	44.4	58.5
$+R_{LWR}$	50.1(+2.1)	31.5(+2.4)	46.9(+2.5)	60.4(+1.9)

Ablation Studies

Methods	Few	Medium	Many	All
Balanced Softmax [31]	25.0	46.7	63.9	46.3
$+R_{LWR}$	28.8	51.6	64.0	49.3
+R _{LWR} w/ proj	30.0	49.9	65.3	49.5
$+\lambda(t)R_{LWR}$ w/ proj	32.2	<u>50.0</u>	66.6	50.7

$\boldsymbol{\theta}$	Few	Medium	Many	All
-1.0	30.0	50.3	65.3	50.1
0	29.9	51.3	65.5	50.0
0.2	30.3	51.4	65.5	50.2
0.4	32.2	50.0	66.6	50.7
0.6	31.3	49.7	65.5	49.9
1.0	25.0	46.7	63.9	46.3

Comparison with the State-of-the-arts

Methods	Architecture	All	Few	Medium	Many	Methods	All		IF=100				
Focal [20]	ResNet-50	38.0	11.2	31.0	56.3		IF=100	IF=50	IF=10	Few	Medium	Many	All
BBN§ [46]	ResNeXt	41.2	40.8	43.3	40	Softmax	38.6	44.0	56.4	8.7	37.6	65.3	38.6
Softmax	ResNet-50	41.6	5.8	33.8	64.0	CBL [†] [10]	39.6	45.4	58.0	-	-	-	39.6
UNO-IC§ [34]	ResNeXt	45.7	9.3	38.7	66.3	IB-Loss [28]	39.8	46.4	50.4	20.4	44.9	50.3	39.8
OLTR§ [22]	ResNeXt	46.7	19.5	45.5	58.2	Focal [20]	41.9	48.2	59.8	10.9	41.3	68.7	41.9
LFME§ [41]	ResNeXt	47.0	22.0	43.5	60.6	BBN [†] [46]	42.6	47.0	59.1	-	-	-	42.6
ESQL [§] [32]	ResNeXt	47.3	15.7	44	62.5	UNO-IC [†] [34]	43.1	-	58.6	-	-	-	43.1
cRT# [17]	ResNet-50	47.3	26.1	44.0	58.8	SEQL [†] [32]	43.4	-	-	-	-	-	43.4
CE-DRW [5]	ResNet-50	47.6	28.0	44.9	57.6	LFME [†] [41]	43.8	-	-	28.0	-	59.5	43.8
LWS# [17]	ResNet-50	47.7	29.3	45.2	57.1	BS[31]	46.3	51.2	61.5	25.0	46.7	63.9	46.3
LA [26]	ResNet-50	48.0	29.1	44.4	58.5	LA [26]	46.5	-	-	24.4	47.1	63.6	46.5
BS [31]	ResNet-50	48.7	24.0	46.2	60.5	LDAM-DRW[5]	46.6	51.2	59.6	22.8	48.5	64.4	46.6
LDAM-DRW# [5]	ResNet-50	49.8	30.7	46.9	60.4	Ours(R_{LWR} + BS [31])	50.7	54.3	63.6	32.2	50.0	66.6	50.7
$Ours(R_{LWR} + BS [31])$	ResNet-50	51.5	30.7	49.2	62.6								