Background

® RGB-T semantic segmentation tries to accurately classify
each pixel of a RGB image into a specific label by using a

thermal 1mage as complementary data.

@® Most deep learning-based RGB-T methods suffer from low

real-time semantic segmentation.

computational efficiency, 1.e., they are not suitable for RGB-T i
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Thermal

® Some lightweight networks with a good balance between
accuracy and efficiency for segmentation in recent years having e e e o e e e o Lo b et et e e e e ) o
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Method Contribution

| @ This paper proposes a novel Label-guided Real-time Fusion
Network which fuses detail and context features of RGB and
thermal 1images extracted from double two-pathway

lightweight backbones respectively based on the proposed
Label-guided Fusion Module (LFM) to achieve fast and
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label 1n the training phase to accurately indicate the
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Fusion

already adopted for RGB-based real-time semantic
segmentation, but they are seldom discussed for RGB-T real-
time semantic segmentation.

©® Conventional fusion modules based on element-wise

addition or concatenation fail to fully integrate information of
paired RGB and thermal 1mages.

® Most current fusion module designs are conducted based on
heavy backbones, and their performance are not validated
based on real-time lightweight backbones.
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® Our model achieves 55.1% mloU with the speed of
111.3FPS on the MFNet dataset, and 78.4% mlIoU with the
speed of 67.3FPS on the PST900 dataset.
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Experimental Results

Simple Fusion Methods (w/o LFM) Placement of LFM

Model | 4 Channels Concatenation Addition before FFM  after FFM !
mAcc 64.7 65.7 65.5 63.0 64.5 :
mloU 52.4 53.8 53.7 55.1 53.6 |
Loss Function Structure of FEM :
Model CE WCE WCE+L (*, *) with FEM w/o FEM Thermal Image RGB Image :
mAcc 61.2 66.7 68.0 68.0 671 | W_, in Context Path
mloU 53.6 54.3 55.1 55.1 54.2 TR (T |
Ablation Study : :
Methods Type | Publication Backbone | Params. (M) FLOPs (G) FPS | mAcc mloU . - :

|
BiSeNet-3c | RGB | ECCV 2018 | ResNet!8 13.3 174 2417] 614 482 | ' \wiaoucSupervision  With Supervision
BiSeNet-4c | RGB | ECCV 2018 ResNetl8 13.3 17.9 2373 | 647 524 e W' 'l_n' ép;tlz_ll l_’a;h """""
MFNet RGBT | IROS 2017 No 0.7 8.4 178.1 | 45.1  39.7 I‘_‘_ T T e " """""""" i
RTFNet-152 | RGBT | RAL 2019 ResNet152 254.5 290.3 164 | 63.1 532 : | |
FuseSeg RGBT | T-ASE 2021 | DenseNetl61 100.1 141.0 20.5 | 70.6  54.5 | . ‘ :
ABMDRNet | RGBT | CVPR 2021 ResNet50 64.6 194.3 23.1 | 69.5 548 . :
EGFNet RGBT | AAAI2022 | ResNetlO1 62.8 201.3 20.5 | 727 548 ! i
Ours RGBT ResNet18 25.9 320 1113 | 68.0 55.1 :_ Without Supervision  With Supervision |

Comparison results from the MFNet dataset

Spatial Attention Maps

Visualization Examples
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Visualization segmentation examples of our method and five representative state-of-the-art methods




