

Background

• RGB-T semantic segmentation tries to accurately classify each pixel of a RGB image into a specific label by using a thermal image as complementary data.

Most deep learning-based RGB-T methods suffer from low computational efficiency, i.e., they are not suitable for RGB-T real-time semantic segmentation.

Motivation

• Some lightweight networks with a good balance between accuracy and efficiency for segmentation in recent years having already adopted for RGB-based real-time semantic segmentation, but they are seldom discussed for RGB-T realtime semantic segmentation.

• Conventional fusion modules based on element-wise addition or concatenation fail to fully integrate information of paired RGB and thermal images.

Most current fusion module designs are conducted based on heavy backbones, and their performance are not validated based on real-time lightweight backbones.

		E	xperimen	tal Resul	ts							
	Sir	nple Fusion	Pla	Placement of LFM				Input I	mage			
Model	4 Channels Concatenation		atenation	Addition	before FFM		after FFM		1			
mAcc	64.7		65.7	65.5	68.0		64.5					man and in a prover of
mIoU	52.4		53.8	53.7	55.1		53.6			Marriel - Marriel	and the second second second	
		Los		Structure of F			M	1 !				
Model	CE	CE WCE		WCE+ $\mathcal{L}(*,*)$	with FEM		w/o FEM		1 :	Thermal Image	RGB Image	
mAcc	61.2	61.2 66.7		68.0	68.	68.0		67.1		W _{cp} in Co	ntext Path	
mIoU	53.6	53.6 54.3		55.1	55.	55.1		54.2		<u> </u>		
Ablation Study								į	A start A			
Methods	Туре	Publication	Backbone	Params. (M)	FLOPs (G)	FPS	mAcc	mIoU				
BiSeNet-3c	RGB	ECCV 2018	ResNet18	13.3	17.4	241.7	61.4	48.2		Without Supervision	With Supervision	
BiSeNet-4c	RGB	ECCV 2018	ResNet18	13.3	17.9	237.3	64.7	52.4	_ _	W _{sn} in Spa	atial Path	
MFNet	RGBT	IROS 2017	No	0.7	8.4	178.1	45.1	39.7		sp -r		
RTFNet-152	2 RGBT	RAL 2019	ResNet152	254.5	290.3	16.4	63.1	53.2			Nice D	
FuseSeg	RGBT	T-ASE 2021	DenseNet161	100.1	141.0	20.5	70.6	54.5	i	Section Const	man Hill Bar Asia	
ABMDRNe	t RGBT	CVPR 2021	ResNet50	64.6	194.3	23.1	69.5	54.8	1			BCB Imaga Tha
EGFNet	RGBT	AAAI 2022	ResNet101	62.8	201.3	20.5	72.7	54.8				RGD Image The
Ours	RGBT	-	ResNet18	25.9	32.0	111.3	68.0	55.1		Without Supervision	With Supervision	Background
Comparison results from the MFNet dataset										Spatial Atte	ntion Maps	

	Sir	nple Fusion	/o LFM)	Pla	cemen	t of LF	M	Input Image	
Model	4 Chanr	nels Conc	atenation	Addition	before	FFM	after FFM		
mAcc	64.7		65.7	65.5	68	.0	64.5		a set a s
mIoU	52.4		53.8	53.7	55	55.1		3.6	Martine Carlo Carlo Martine Martine
	Loss Function					Structure of FEM			
Model	CE		WCE	WCE+ $\mathcal{L}(*,*)$	$/\text{CE+}\mathcal{L}(*,*)$ with J		w/o FEM		Thermal Image RGB Image
mAcc	61.2		66.7	68.0	68	.0	67.1		W _{cp} in Context Path
mIoU	53.6	:	54.3	55.1	55	.1	54.2		
Ablation Study									
Methods	Туре	Publication	Backbone	Params. (M)	FLOPs (G)	FPS	mAcc	mIoU	
BiSeNet-3c	RGB	ECCV 2018	ResNet18	13.3	17.4	241.7	61.4	48.2	Without Supervision With Supervision
BiSeNet-4c	RGB	ECCV 2018	ResNet18	13.3	17.9	237.3	64.7	52.4	W _{cn} in Spatial Path
MFNet	RGBT	IROS 2017	No	0.7	8.4	178.1	45.1	39.7	
RTFNet-152	RGBT	RAL 2019	ResNet152	254.5	290.3	16.4	63.1	53.2	
FuseSeg	RGBT	T-ASE 2021	DenseNet161	100.1	141.0	20.5	70.6	54.5	
ABMDRNet	t RGBT	CVPR 2021	ResNet50	64.6	194.3	23.1	69.5	54.8	DCD Image That
EGFNet	RGBT	AAAI 2022	ResNet101	62.8	201.3	20.5	72.7	54.8	KGB Image I nel
Ours	RGBT	-	ResNet18	25.9	32.0	111.3	68.0	55.1	Without Supervision With Supervision Background
	(Compariso	n results fr	om the MEN	Snatial Attention Mans				

Comparison results from the wirnet dataset

Label-guided Real-time Fusion Network for RGB-T Semantic Segmentation

Zengrong Lin¹, Baihong Lin², Yulan Guo¹

¹ School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, China ² Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China

This paper proposes a novel Label-guided Real-time Fusion Network which fuses detail and context features of RGB and thermal images extracted from double two-pathway lightweight backbones respectively based on the proposed Label-guided Fusion Module (LFM) to achieve fast and accurate perception.

• The LFM conducts weighted feature fusion based on a spatial attention map generated with the guidance of semantic label in the training phase to accurately indicate the contribution of different modalities.

• Our model achieves 55.1% mIoU with the speed of 111.3FPS on the MFNet dataset, and 78.4% mIoU with the speed of 67.3FPS on the PST900 dataset.

1. Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation network for real-time semantic segmentation. ECCV, 2018.

2. Qiang Zhang, Shenlu Zhao, Yongjiang Luo, Dingwen Zhang, Nianchang Huang, and Jungong Han. Abmdrnet: Adaptive-weighted bi-directional modality difference reduction network for rgb-t semantic segmentation. CVPR, 2021.

3. Wujie Zhou, Shaohua Dong, Caie Xu, and Yaguan Qian. Edge-aware guidance fusion network for rgb-thermal scene parsing. AAAI, 2022.

Visualization segmentation examples of our method and five representative state-of-the-art methods

https://github.com/llzeros/LRFNet-master

Contribution

Reference