

Towards Clip-Free Quantized Super-Resolution Networks: How to Tame Representative Images

Alperen Kalay, Bahri Batuhan Bilecen, Mustafa Ayazoglu Aselsan Inc., Türkiye

Introduction

Nearly all quantized mobile super-resolution (SR) networks utilize clipped activations to make the model more robust to post-training quantization (PTQ) in return for a large overhead in runtime. We propose a novel pipeline to **augment representative dataset (RD) used in PTQ, which can successfully eliminate unwanted clipped activation layers**.

Removing clipped activations with our method significantly benefits **decreased inference runtime up to 54% on some SR models**, better visual quality results compared to INT8 clipped models - and **outperforms even some FP32 non-quantized models**, both in runtime and visual quality, without the need for retraining with clipped activation.

Preliminary Observations

We have run extensive experiments to understand the underlying problem:

• Clipped activations affect PTQ stability drastically. Using grayscale images as the RD works better than RGB:

Models	XCAT			ABPN				ESPCN					FSRCNN				RFDNNet			
Precision	FP	932	IN	T8	F	P32	IN	T8	FF	P 32	IN	NT8	FI	232	IN	T8	Fl	P32	Π	NT8
Clip	✓	×	✓	×	✓	×	✓	×	✓	X	✓	×	✓	×	✓	X	✓	×	1	×
$PSNR_{R=RGB}$ $PSNR_{R=Gray}$	32.87	32.98	32.63 32.31	26.57 28.48	33.13	33.18	32.85 32.52	26.13 28.44	32.23	32.23	$3 \begin{vmatrix} 31.18 \\ 30.85 \end{vmatrix}$	24.92 26.26	32.83	32.83	31.35 31.12	25.69 27.24	9 4 33.02	32.97	7 32.2 31.7	3 25.62 6 27.05
$\begin{array}{c} \Delta_{R=RGB} \\ \Delta_{R=Gray} \end{array}$	-0.	.11	6. 3.	06 83	-().05	6. 4.	.72 .08	<u> </u>	~0	6 4	.26 .59	<u> </u>	~ 0	5. 3.	.66 . 88	-0	0.05		5.61 .71

• The number of images in the RD also affects the PTQ quality. Using a single image is better

since a single bad one can affect the overall dataset (good RD images are the ones that have the smallest PSNR difference between their clipped INT8 and no-clip INT8 models, and vice versa for the bad ones)

RD Size	RD		XC	AT			AB	PN			ESP	CN			FSRO	CNN			RFDN	Net	
		all RD	min	max	avg	all RD	min	max	avg	all RD	min	max	avg	all RD	min	max	avg	all RD	min	max	avg
5	Good images	32.84	32.57	32.85	32.72	33.11	32.86	33.11	33.00	31.44	30.86	31.82	31.53	32.03	30.41	32.01	31.40	32.28	29.79	32.16	31.54
5	Bad images	22.95	22.95	25.70	24.05	20.93	20.93	24.84	23.41	20.20	20.20	23.43	21.94	21.48	21.47	24.85	23.49	21.60	21.72	24.09	23.16
5	Random selections from <i>good</i> and <i>bad</i>	23.69 22.95 22.95	23.47 22.95 22.95	32.85 31.71 32.86	29.50 27.22 28.95	24.22 20.93 20.93	24.39 20.93 20.93	33.11 33.04 33.04	29.67 26.87 28.83	21.74 20.20 20.20	21.83 20.20 20.20	31.79 31.82 31.79	28.04 25.46 27.21	22.40 21.47 21.47	21.83 21.47 21.47	31.79 31.80 31.49	28.04 26.60 27.77	23.08 21.71 21.72	21.83 21.72 21.72	31.79 31.89 32.04	28.04 26.11 27.89
10	Good + bad	22.95	22.95	32.85	28.38	20.93	20.93	33.11	28.20	20.20	20.20	31.82	26.73	21.48	21.47	32.02	27.44	21.60	21.72	32.16	27.35
100	DIV2K training images	22.08	22.08	32.85	28.19	21.61	21.61	33.06	28.13	19.87	19.87	31.79	26.04	19.40	31.96	19.39	26.89	20.75	20.72	32.04	26.83

• The number of outliers in the FP32 model's response to the corresponding representative image gives us a measure of whether the image is good or bad

Therefore, if we reduce the outliers, we may also decrease ΔR =Gray and increase the PTQ stability. This also means that we can understand whether a representative image would be considered as good or bad without performing PTQ. Then, if we correctly identify and use good representative images, we can omit the clipped activation layer without any loss in the INT8 model.

Procedure

We propose a **pipeline consisting of two methods** to augment RD images in order to be able to apply PTQ to mobile super-resolution networks without using clipped activations: **Method 1 (M1):** Selection of good representative images **Method 2 (M2):** Enhancing the bad images

	RFDNNet	29.058 (7)	28.906 (793)) 28.877 (7)	25.605 (793)	28.748 (793)
BSD100	XCAT	28.094 (15)	28.126 (785)) 28.216 (15)	25.907 (785)) 28.126 (785)
	ABPN	28.165 (15)	28.196 (785)	28.408 (15)	26.069 (785)	28.150 (775)
	ESPCN	27.494 (8)	27.821 (792)	27.684 (8)	24.960 (792)	27.843 (792)
	FSRCNN	27.611 (13)	27.736 (787)	27.723 (13)	25.452 (787)	27.785 (787)
	RFDNNet	28.231 (7)	28.149 (793)	28.165 (7)	25.459 (793)	28.073 (793)
Urban100	XCAT	25.964 (15)	25.967 (785)) 26.137 (15)	24.328 (785)) 25.845 (775)
	ABPN	26.197 (15)	26.261 (785)	26.440 (15)	24.318 (785)	25.943 (775)
	ESPCN	25.211 (8)	25.104 (792)	25.349 (8)	23.056 (792)	25.448 (792)
	FSRCNN	25.410 (13)	25.444 (787)	25.420 (13)	23.537 (787)	25.397 (787)
	RFDNNet	26.046 (7)	25.922 (793)	25.971 (7)	23.619 (793)	25.815 (793)

Average PSNR improvements of the two-stage (M1, M2) pipeline.

GB: Global Blur	LIBB: Local Iterative Box Blur	LIPB: Local Iterative Point Blur
if $ON(Image) \neq 0$ then	while $ON(Image) \neq 0$ or $IN \neq Thr$	while $ON(Image) \neq 0$ or $IN \neq Thr$
$Image \Leftarrow GB(Image)$	do	do
end if	$Image \Leftarrow LIBB(Image)$	$Image \Leftarrow LIPB(Image)$
	$IN \Leftarrow IN + 1$	$IN \Leftarrow IN + 1$
	end while	end while