

Adaptive Adversarial Norm Space for Efficient Adversarial Training

Hui Kuurila-Zhang, Haoyu Chen and Guoying Zhao Center for Machine Vision and Signal Analysis (CMVS) University of Oulu, Oulu, Finland

Figure 1: Adaptive entropy-guided adversarial norm space during adversarial training.

Motivation

- Adaptive adversarial training strategies have better performance.
- The existing adaptive adversarial training methods are computationally expensive.
- Is it possible to design an adaptive adversarial training algorithm that retains the good performance but not computationally expensive?

Problem definition

Adversarial training:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \max_{||x_{i}'-x_{i}||_{p} \le \epsilon} l(f_{w}(x_{i}'), y_{i}),$$
(1)

Entropy-Guided Cyclical Adversarial Strategy (ECAS)

Cyclically changeable adversarial norm space

$$\varepsilon_n = \frac{\varepsilon_{\max} - \varepsilon_{\min}}{\alpha} \times \operatorname{mod}(\frac{n}{\alpha}) + \varepsilon_{\min}, \qquad (2)$$

• Entropy-guided constraints on norm space

Algorithm 1 ECAS

- **Input:** Current epoch, epsilon space *epsilon_space*, entropy of a batch of inputs *H*, lower entropy *h_low*, higher entropy *h_high*
- Output: Adversarial strength for this batch at the current epoch epsilon_batch
- 1: **function** ECAS(*epoch*, *epsilon_space*, *H*, *h_low*, *h_high*):
- 2: $big_epsilons \leftarrow$ The three biggest epsilons from $epsilon_space$
- 3: $epsilon_batch \leftarrow$ Initialize the epsilons with ones 4: $\varepsilon \leftarrow$ CYCLICAL_EPSILON($epoch, epsilon_space$)
- 4: $\mathcal{E} \leftarrow CYCLICAL_EPSILON(epocn, epsilon_$ 5: $epsilon \ batch \leftarrow epsilon \ batch \times \mathcal{E}$
- 5: $epsilon_batch \leftarrow epsilon_batch \times \varepsilon$ 6: $epsilon_batch[H > h_high] \leftarrow \text{The smallest } \varepsilon \text{ from } epsilon_space$
- 6: $epsilon_batch[H > n_mgn] \leftarrow$ The smallest ε from $epsilon_space$ 7: $epsilon_batch[H < h_low] \leftarrow$ Take a random item from $(big_epsilons)$
- *epsilon_balch*[*H* < *h_low*] *return epsilon_balch*

Optimization

ECAS generates a tailored magnitude (ε_i) of the norm space for each sample i. The adversarial example is then generated by Eq. (4).

$$x'_{i} = \max_{||x'_{i} - x_{i}||_{p} \le \varepsilon_{i}} l(f_{w}(x'_{i}), y_{i}),$$
(4)

The parameter of the network $f_w(\cdot)$ is updated by Eq.(5).

$$w \leftarrow w - \eta \frac{1}{n} \sum_{i=1}^{n} \nabla_{w} l(f_{w}(x_{i}'), y_{i}),$$

$$(5)$$

Experiments

Verification of different schedulers and contribution of each component

Scheduler	Clean	PGD-10	PGD-20	PGD-50	C&W	AA
Baseline (Fixed)	0.8517	0.5607	0.5508	0.5488	0.5391	0.5169
+ Linear	0.8351	0.5704	0.5587	0.5548	0.5497	0.5273
+ Cyclic (batch)	0.8682	0.5648	0.5482	0.5451	0.5495	0.5243
+ Cyclic	0.8634	0.5766	0.5670	0.5637	0.5567	0.5325
+ Cyclic + entropy	0.8632	0.5780	0.5680	0.5648	0.5589	0.5343

Table 1: Performance comparison of models (WRN34-10) trained by PGD-AT [14] with different schedulers on CIFAR-10. Results in bold are from our methods.

Running time analysis

	CIFAR-10			CIFAR-100			
Framework	PGD-AT	TRADES	AWP	PGD-AT	TRADES	AWP	
+L: runtime	681.0s	6048.4s	5587.6s	428.3s	6051.4s	1081.2s	
+Ours: runtime	89.4s	52.0s	59.7s	150.5s	166.0s	149.3s	
+L: clean	0.8623	0.8524	0.8774	0.6180	0.6062	0.6489	
+Ours: clean	0.8632	0.8399	0.8817	0.6116	0.5869	0.6477	
+L: robust	0.5358	0.5415	0.5552	0.2903	0.2812	0.3077	
+Ours: robust	0.5343	0.5202	0.5454	0.2883	0.2824	0.2978	

Table 2: Comparison of the extra running time (1st and 2nd rows) (tested on CIFAR-10 and CIFAR-100 with WRN34-10) when integrating the LAS-AT ("+L." in the table) or ECAS ("+Ours:") to the baseline methods, and their clean accuracy (3rd and 4th rows) and robust accuracy (5th and 6th rows).

Comparisons with SOTA methods

Method	Clean	PGD-10	PGD-20	PGD-50	C&W	AA
PGD-AT [14]	0.8517	0.5607	0.5508	0.5488	0.5391	0.5169
TRADES [23]	0.8572	0.5675	0.5610	0.5590	0.5387	0.5340
FAT [24]	0.8797	0.5031	0.4986	0.4879	0.4865	0.4748
MART [18]	0.8417	0.5898	0.5856	0.5806	0.5458	0.5110
AWP [20]	0.8557	0.5892	0.5813	0.5792	0.5603	0.5390
LAS-AWP [9]	0.8774	0.6109	0.6016	0.5979	0.5822	0.5552
ECAS-AWP (ours)	0.8817	0.6038	0.5910	0.5875	0.5750	0.5454

Table 4: Test result on CIFAR-10 with WRN34-10, the best performance is shown in bold, and the second best is marked underlined

Visualization of the norm space learned by ECAS

1.0 -		h. Mit.		
0.8 -				L L
0.6 -	3			
0.4 -	678			
0.2 -	9 10 11 12			
"l	adjusted			

Figure 2: The percentage distribution of the adjusted and not adjusted magnitude of the norm space in ECAS-PGD-AT during training on the CIFAR-10 dataset

Conclusion

- We empirically identify that cyclically changing the adversarial norm space can improve the robustness of the network
- We propose a simple yet effective entropy-guided cyclical adversarial strategy (ECAS) to periodically adjust the norm space of adversarial examples.
- The proposed method ECAS is easy to integrate with other adversarial training methods and improves their performance to a comparable level as the SOTA method without adding too much extra cost to the computations as the SOTA method does.

Oulu Capital of Northern Scandinavia

Science with Arctic Attitude