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Figure 1: Adaptive entropy-guided adversarial norm space during adversarial training.

Motivation

* Adaptive adversarial training strategies have better performance.

* The existing adaptive adversarial training methods are computationally expensive.

+ Is it possible to design an adaptive adversarial training algorithm that retains the good
performance but not computationally expensive?

Problem definition
Adversarial training:
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Entropy-Guided Cyclical Adversarial Strategy (ECAS)

* Cyclically changeable adversarial norm space
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* Entropy-guided constraints on norm space

Algorithm 1 ECAS
Input: Current epoch epoch, epsilon space epsilon_space, entropy of a batch of inputs
H, lower entropy h_low, higher entropy h_high
Output: Adversarial strength for this batch at the current epoch epsilon_batch
: function ECAS(epoch,epsilon_space, H, h_low, h_high):
: big_epsilons < The three biggest epsilons from epsilon_space
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3 epsilon_batch < Initialize the epsilons with ones

4 £ <+ CYCLICAL_EPSILON(epoch, epsilon_space)

5 epsilon_batch < epsilon_batch x €

6 epsilon_batch[H > h_high] < The smallest € from epsilon_space

7 epsilon_batch[H < h_low)] + Take a random item from (big_epsilons)
8 return epsilon_batch

Optimization
ECAS generates a tailored magnitude (g;) of the norm space for each sample i. The
adversarial example is then generated by Eq. (4).
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The parameter of the network f,, (+) is updated by Eq.(5).
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Experiments
Verification of different schedulers and contribution of each component

Scheduler Clean | PGD-10 | PGD-20 | PGD-50 | C&W | AA

Baseline (Fixed) 0.8517 | 0.5607 | 05508 | 0.5488 | 0.5391 | 0.5169
+ Linear 0.8351 | 0.5704 | 0.5587 | 0.5548 | 0.5497 | 0.5273
+ Cyclic (batch) 0.8682 | 05648 | 0.5482 | 0.5451 | 0.5495 | 0.5243
+ Cyclic 0.8634 | 0.5766 | 0.5670 | 0.5637 | 0.5567 | 0.5325
+ Cyclic + entropy | 0.8632 | 0.5780 | 0.5680 | 0.5648 | 0.5589 | 0.5343

Table 1: Performance comparison of models (WRN34-10) trained by PGD-AT [14] with
different schedulers on CIFAR-10. Results in bold are from our methods.

Running time analysis

CIFAR-10 CIFAR-100

Framework PGD-AT | TRADES AWP | PGD-AT | TRADES AWP

+L: runtime 681.0s 6048.4s | 5587.6s | 428.3s 6051.4s | 1081.2s
+Ours: runtime 89.4s 52.0s 59.7s 150.5s 166.0s 149.3s
+L: clean 0.8623 0.8524 0.8774 | 0.6180 0.6062 0.6489
+Ours: clean 0.8632 0.8399 0.8817 | 0.6116 0.5869 0.6477
+L: robust 0.5358 0.5415 0.5552 | 0.2903 0.2812 0.3077
+Ours: robust 0.5343 0.5202 0.5454 | 0.2883 0.2824 0.2978

Table 2: Comparison of the extra running time (1st and 2nd rows) (tested on CIFAR-10 and
CIFAR-100 with WRN34-10) when integrating the LAS-AT (“+L:" in the table) or ECAS
(“+Ours:") to the baseline methods, and their clean accuracy (3rd and 4th rows) and robust
accuracy (5th and 6th rows).

Comparisons with SOTA methods

[ Method Clean PGD-10 PGD-20 PGD-50 C&W  AA |
PGD-AT [14] 0.8517 05607  0.5508 05488 0.5391 0.5169
TRADES [23] 0.8572 05675  0.5610 05590 0.5387 0.5340
FAT [24] 0.8797 05031 04986 04879 04865 0.4748
MART [18] 0.8417 05898  0.5856 05806 0.5458 0.5110
AWP [20] 0.8557 05892  0.5813 05792 0.5603 0.5390
LAS-AWP [9] 0.8774  0.6109  0.6016  0.5979  0.5822 0.5552
ECAS-AWP (ours) || 0.8817  0.6038  0.5910 05875 0.5750 0.5454

Table 4: Test result on CIFAR-10 with WRN34-10, the best performance is shown in bold,
and the second best is marked underlined

Visualization of the norm space learned by ECAS
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Figure 2: The percentage distribution of the adjusted and not adjusted magnitude of the norm
space in ECAS-PGD-AT during training on the CIFAR-10 dataset
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Conclusion

We empirically identify that cyclically changing the adversarial norm space can improve
the robustness of the network

We propose a simple yet effective entropy-guided cyclical adversarial strategy (ECAS)
to periodically adjust the norm space of adversarial examples.

The proposed method ECAS is easy to integrate with other adversarial training methods
and improves their performance to a comparable level as the SOTA method without
adding too much extra cost to the computations as the SOTA method does.
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