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Background Contribution
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= Whole Slide Images (WSIs) are gigapixel (100k x 100k pixels) multi-resolution digital = We propose a novel end-to-end multi-stain self-attention graph (MUSTANG) multiple
stained pathology images. Semi-quantitative examination of multi-stain sets of WSlIs is instance learning pipeline. MUSTANG solves a weakly-supervised gigapixel multi-image
used as the gold standard for diagnosis and subtyping of cancer/autoimmune diseases by classification task, where the label is assignhed at the patient-level across a set of images,
expert pathologists. but no image/patch-level labels are available.
* i Ui i sevrs
HEEstained slide Digital Whole Slide Image| M2gniicarion levels = The pipeline introduces a self-attention-based approach by restricting attention
i . operations to a highly sparse k-Nearest Neighbour Graph (k-NNG) of embedded WSI
552 ‘”1 OAO’O patches based on Euclidean distance.
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£3: S ' S i T e 5 e = Qur approach does not require registration of WSIs, preprocessing or labelling of regions
O gmmenconnedisliced of interest, nor any feature engineering for the embedded feature vectors, making it
straightforward and flexible to apply to real-world clinical datasets.
= Due to their size WSIs present a challenging computer vision task, with Transformer - ’

solutions rendered intractable due to their quadratic complexity. Proposed Meth()d
= Multiple Instance Learning (MIL) techniques divide the images into thousands of smaller = A - Segmentation: UNet segmentation of tissue areas
patches, each inheriting the noisy patient label, with trainable pooling layers then used to on the WSls.

aggregate the information.

* B - Patching: The tissue area is divided into N patches.

= These approaches often employ attention, which can fail to capture long-range [@) .5 e st [@) i w
dependencies. Applying self attention between patches is desirable to accurately catch = (C - Feature extraction: The image patches are each passed through a CNN feature
complex diagnostic patterns. extractor and embedded into a [1x1024] feature vector. All feature vectors for a

- / patient - across the multi-stain WSI set - are aggregated into a [Nx1024] matrix.
= D - k-Nearest-Neighbour Graph: The [Nx1024] matrix is used to
[ create a sparse directed k-NNG using Euclidean distance, with k = 5.
il | o | The attribute of each node corresponds to a [1x1024] feature vector
/ et / — and the graph represent the WSIs set. This graph is used as input to
— : - — the GNN.
— = E - Graph classification: The k-NNG is successively passed through
- four Graph Attention Network layers (E1 - GAT) and SAGPooling (E2 -
s SAGPool) layers. The readouts from each layer are concatenated and
passed through three MLP layers and finally classified.
Multi-stain WSI set per patient A- UNet Segmentation B- Patching C- Feature extraction
= F - Prediction: A diagnosis prediction is obtained at the patient-level.
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The Rheumatoid Arthritis R4RA clinical trial dataset was gathered in 20 European centres and recruited a total of 164 patients who underwent ultrasound-guided synovial biopsy
of a clinically active joint. The synovial tissue samples were then stained with Hematoxylin & Eosin (H&E) and Immunochemistry (IHC) stains. Each dye highlights different cellular
components: H&E nuclei, CD20+ B cells, CD68+ macrophages and IHC+4+ CD138 plasma cells and each contain complimentary information about the underlying disease process. The
dataset has a total of 651 WSIs, with a variable number of WSIs per patient and a total of 309,248 non-overlapping 224 x224 pixels patches extracted at 10x magnification.

Results
MUSTANG outperforms the benchmark by 5 percentage points, with a substantially similar test | . " = s
runtime. It accurately identifies both correct and true positives (Sens.=0.93), an important : | - SO The spring layout shows

consideration in healthcare. MUSTANG does not show accuracy loss on single-stain WSIs, whereas
CLAM performs better on single-stain WSIs. This shows MUSTANG can better integrate long range
dependencies across stains, identifying complex spatial arrangements pertaining to disease subtyping.

closely connected nodes
clustering together.

There is a good degree

Multi-stain results of mixing between WSils,

Fl-score AUC Sens Spec Params[M] Test runtime [min] : ic';‘:]iczg\t‘vg betvivnefeor: ”:1: o
CLAM 0.34 0.88 0.86 0.82 0.47 10 |
MUSTANG (ours)  0.89 092 093 0.82 3.29 11 JANNG (k — 5 pltied wsing Networkocs sprng-ayout. T | )

Single-stain results — F1-score

CDI138 CD68 CD20 HE
CLAM  0.85 0.87 0.88 0.76
MUSTANG (ours) 0.89 0.89 0.87 0.78

Future work

= Visualisation of attention heatmaps for added interpretability of
clinical results.

. . Figure 4. k-NNG layout for different values of k. From left to right, k =1, k = 2, k = 3, " Benchmarking on public datasets (TCGA/Came|y0n16).
_ o b= A e i =5, = Structure aware graph transformer.
The graph becomes weakly connected in k=5, coinciding \
with increased accuracy, indicating the sparsest weakly References
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