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6 Supplementary Material: BEA

6.1 Evaluation of Tandem Loss on Confidence Prediction in BEA
using YOLOv3:

Figure 8 illustrates the impact of Tandem Loss-Ltandem on confidence prediction loss, which
is one of the regression losses of YOLOv3. The experiment was conducted on Budding-
Ensemble Architecture (BEA) to evaluate the usability of Tandem Loss. The loss of pre-
dicted confidence score reflects the model’s proficiency in detecting an object by a particular
anchor. Figure 8 displays the monitoring of Lta, while Figure 8 displays the monitoring
of Ltq losses. The application and monitoring of these losses depend on the configuration
indicated in the legends of the corresponding figures. Figure 8 demonstrates that the BEA
with Tandem Loss configuration shows superior performance in reducing the variance of
respective positive predictions between α and β detectors by decreasing the Lta compared
to the separate factors of Ltandem loss, including the absence of Ltandem loss. This is also
shown by the data points along a vertical line denoted by XV in the legends. Similarly, the
Figure in 8 illustrates that the BEA without the Tandem Loss results in the decreased vari-
ance of negative predictions between the α and β detectors, which is not desirable as we
prefer to have high variance between the corresponding negative predictions. In Figure 8, it
is worth noting that the BEA configuration with individual factors of Ltandem loss produces
a preferred result in increasing the variance between negative predictions. However, this also
hurts Lta loss as shown in Figure 8. This indicates that using both Lta and Ltq together leads
to better performance in improving the confidence scores of True Positives and reducing the
scores of False Positives. This results in better-calibrated prediction outcomes.

6.2 Extended Ablation Study of Table 1 with OOD results on
YOLOv3

Ltandem mAPraw ↑ AP50raw ↑ AP50Upred ↑ UE (%) ↓ Retention Curve
AUC (%) ↑

Out-of-distribution detection (OOD)
AUC-ROC (%)↑

Lta Ltq
CityPersons
Unear−ood

BDD100K
Unear−ood

COCO
U f ar−ood

✗ ✗ 52.36 87.96 79.11 9.65 56.9 81.05 77.21 94.81
✓ ✗ 54.07 88.56 79.44 11.05 54.2 77.01 75.97 93.63
✗ ✓ 54.82 88.31 82.15 9.03 57.1 72.8 73.79 91.61
✓ ✓ 54.83 89.2 85.79 4.55 73.9 98.75 86.71 97.33

Table 2: Extended Ablation study on BEA-YOLOv3 with on YOLOv3: Effects on the accuracy, un-
certainty error, calibration and out-of-distribution shown by Ltandem.

Table 2 provides an extended ablation study to understand the dependency of Lta and Ltq
loss functions individually. This comprehensive study presents out-of-distribution (OOD)
results for various configurations of Tandem Loss (Ltandem). The table highlights the impor-
tance of adding Lta and Ltq Tandem Loss together leading to improved prediction accuracy
and calibration of confidence score, higher uncertainty estimates, and better OOD detection
performance.
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Figure 8: Monitoring objectness-based losses - Impact of Tandem Loss (Ltandem) across various BEA-
YOLOv3 configurations) : (a) Monitoring of Lta on predicted confidence scores for positive predic-
tions from the Tandem Detectors; (b) Monitoring of Ltq on predicted confidence scores for negative
predictions from the Tandem Detectors

Model Parameters (MM)
Base-YOLOv3 61.5

M-Ensemble YOLOv3 M×61.5
BEA-YOLOv3 82.53

Base-SSD 25.5
M-Ensemble SSD M×25.5

BEA-SSD 30.63
BEA-SSD Arch2 27.5

Table 3: Computational-Overhead Analysis of BEA
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Figure 9: Analysing different versions of BEA-SSD to optimise the computational overhead
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Figure 10: Different versions of SSD : (a) Base-SSD (Vanilla version); (b) BEA-SSD; (c) BEA-SSD
Arch 2
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Figure 11: Visual examples of BEA on YOLOv3

6.3 SSD architecture with BEA:
This section explores the potential of splitting the architecture during the creation of BEA
(Backend for Analytics) to further minimize overhead. We specifically examine the possi-
bility of splitting the architecture at a later stage, beyond the backbone, to not only reduce
computational overhead but also maintain similar levels of uncertainty estimation and cal-
ibration. The BEA-SSD results shown in Table 1 by duplicating the entire detector after
VGG backbone as shown in Figure 10-b. The BEA-SSD has 20.1% more parameters than
the Base-SSD. The Figure 10-c is optimised version of BEA and Table 3 shows that BEA-
SSD Arch2 has just 7.8% more parameters than the Base-SSD. By employing the same loss
functions and ratios, the performance of BEA-SSD Arch2 experiences a noticeable decline.
However, it is possible to restore the performance to the original BEA-SSD levels by effec-
tively controlling the ratios of Lta and Ltq, as illustrated in Figure 9.

6.4 Visual Inspection of Budding-Ensemble Architecture’s
performance: Figure 11, 12, 13
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Figure 12: Visual examples of BEA using Gaussian-YOLOv3

Figure 13: Exotic visual example of BEA on YOLOv3: The truck with a nature poster lowers the
confidence score of the prediction in non BEA models.


