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A Datasets
We evaluate our method over a wide range of datasets including GrabCut, Berkeley, DAVIS,
COCO and SBD, by following the standard evaluation protocol.

GrabCut[6] is a typical interaction segmentation dataset, which contains 50 images with
distinguishable foreground and background.

Berkeley[4] contains 96 images with 100 object masks from its test subset.
DAVIS[5] is originally introduced for video segmentation. Only 345 randomly sampled

frames with finely labeled objects are used in our method by following [2].
COCO[3] is a typical semantic segmentation dataset, containing more complex scene

and multiscale objects. Following [8], we split the dataset into COCO(seen) and COCO(unseen)
according to their object class whether in PASCAL VOC or not. And finally, 10 images are
sampled randomly for each category. For simplicity, we denote COCO(seen) and COCO(unseen)
as COCOs and COCOu

SBD[1] contains 6671 object masks for 2820 images.

B More comparison with SAM on iShape Dataset
To further demonstrate our advantage compared to SAM, we evaluate our model and SAM
on the iShape dataset [9], which has many thin structure and requires model to segment
details. As in Fig.1, our approach significantly surpass SAM on iShape dataset when number
of points exceeds 5, which indicates that out approach is better at segmenting the detailed
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(slender and long) part. Additionally, as shown in Fig.2, our approach is better at segmenting
the detailed (slender and long) parts.
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Figure 1: Comparison with SAM on iShape dataset. It is obvious that although SAM has higher
mIoU at first, our I2Pnet quickly catches up and surpass SAM as the number of points increases.

Figure 2: Examples of comparison with SAM on iShape dataset. They are two examples of "hanger"
and "branch" classes in iShape dataset. Points with color from dark green to light green are the positive
ones added from early to late, while the ones with color from red to yellow are negative points. The
rightmost images are the ground truth.
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Figure 3: The distribution of the number of clicks on DAVIS dataset. The experiments are on the
ResNet-50 backbone. The left of red dotted line is the success samples and the right of red dotted line
is the failed samples, which can’t reach 90% IoU within 20 clicks. 1-5 means the number of samples
that need at least one click and at most five clicks to reach 90% IoU.

Table 1: The performance on DAVIS. Boundary IOU(B-IOU) is evaluated under 20 interactive step.

Method NoC@90 B-IOU(20 steps)

RITM+CascadePSP 6.82 85.30
RITM 6.68 86.25

FocusCut 6.22 87.40
Ours 5.80 87.07

C Success samples with different number of clicks

To further analysis our improvement, we report the distribution of success samples with dif-
ferent number of clicks on the challenging fine-grained DAVIS dataset, which contains 345
samples in total. As in Fig.3, our approach can successfully segment 71.3% (246) samples
within 5 clicks, which greatly outperforms the RITM by 8.1%. It indicates that we can better
utilize user-provided sparse click information.

D The performance of boundary

To validate our design, we utilize cascadePSP to refine the prediction of RITM in each step.
We evaluate NoC@90 and boundary IOU when each image is interacted for 20 steps on the
challenging DAVIS dataset. The results in Tab.1 below show that CascadePSP actually hurts
the performance. The main reason is that CascadePSP ignores the human input, which is
essential for interactive segmentation. Such smoothing may lead to failure cases when the
target region includes multiple object classes, such as segmenting people and horses in Fig.1
(main text). More importantly, compared with FocusCut which refine the boundary progres-
sively, we achieve comparable results on boundary IOU and much lower NoC, illustrating
our method can capture user intention and segment the boundary simultaneously.
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Table 2: Ablation study of HSGN on ResNet-34 backbone. Baseline(BS) is our imple-
mentation of RITM[7]. The Fuse means directly concatenating the high-resolution feature
with the high-level feature and then going through a convolution layer with ReLU.

# Comparison DAVIS SBD

1 BS + SGN 6.62 5.57
2 BS + SGN + Fuse 6.75 5.51
3 BS + SGN + Fuse + SGN 6.52 5.39
4 BS + SGN + HSGN 6.39 5.36

Table 3: The results on DAVIS under different perturbations.

Method a = 0 a = 3 a = 6

RITM 6.68 6.89 7.15
Ours 5.75 5.77 6.01

E HSGN analysis
To further investigate the proposed HSGN, we conduct several additional ablations on its
design. As shown in Tab.2, when directly fusing the multi-scale features in HSGN without
any sparse message propagation, the results in 1st & 2nd row indicate that such design will
not bring any performance gain. Furthermore, we apply another SGN to conduct sparse
click message propagation on the high-resolution feature map after fusion. The results in
3rd row show that the SGN can propagate annotated click features effectively and benefit
the final segmentation results. However, it still underperforms our proposed HSGN due to
its inaccurate affinity calculated on low-level features. Overall, our HSGN performs best
compared with other variants and achieves 6.39 and 5.36 NoC@90 on DAVIS and SBD
respectively.

F Undesired annotated point
We apply random perturbation to the ideal click positions based on a uniform distribution in
[−a,a]2. We re-evaluate RITM and our method on DAVIS under a = {0,3,6} pixels. The
results below indicate that the undesired annotations do cause performance drop. But our
method still outperforms the RITM by a large margin and is more robust to the click noises.
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