

Mobile Vision Transformer-based Visual Object Tracking

Goutam Yelluru Gopal and Maria Amer Concordia University, Montréal, Québec, Canada

Introduction

Motivation:

- Vision Transformer-based trackers
 - are computationally expensive due to a large number of model parameters.
 - require specialized hardware for real-time inference.

Tracker	GOT10k		Track	ingNet	#params↓	fps
	$OR\uparrow$	$SR_{0.50}$ \uparrow	$AUC\uparrow$	$P_{norm} \uparrow$	(in millions)	CPU ↑
DiMP-50	0.611	0.717	74.0	80.1	26.1	15.0
TransT	0.671	0.768	81.2	85.4	23.0	2.3
STARK-ST101	0.688	0.781	82.0	86.9	47.2	7.8
OSTrack-384	0.740	0.835	83.9	88.5	92.1	4.4
MixFormer-L	0.756	0.857	83.9	88.9	183.9	< 5

Key Contributions

Mobile Vision Transformer-based backbone:

- Cascade of Convolutional and Transformer blocks for feature extraction.
- Convolutional blocks model the spatially local information.
- Transformer blocks capture the long-range feature dependecies.

Feature fusion in tracker backbone:

- Self-attention on the concatenated template and search region features.
- Exchange of information *within* and *between* the two regions.

High inference speed:

- Joint feature extraction and fusion requires fewer attention operations.
- 175 *fps* on GPU and 29 *fps* on CPU (Pytorch).

• 300 fps on GPU (TensorRT) and 70 fps on CPU (ONNX Runtime).

Proposed Mobile Vision Transformer-based Tracker (MVT)

Proposed Backbone:

- Cascaded MobileNetV2 (or MV2) and Siam-MoViT blocks for feature extraction.
- Siam-MoViT block fuses features from the two branches.

Neck Module:

• Cross-correlation between template and search region features.

Head Module:

• Two fully-convolutional branches for classification and bounding box regression.

Loss function for training:

- Classification (L_{cls}) and regression $(L_1 \text{ and } L_{qiou})$ losses.
- Overall training loss,

 $L_{total} = L_{cls} + \lambda_1 \cdot L_1 + \lambda_2 \cdot L_{aiou}.$

Results

Implementation Details:

Analysis

Ablation Study on Feature Fusion:

- The template and search region dimensions are 128×128 and 256×256 .
- GOT10k-train dataset for training the model.
- Training for 100 epochs with a batch size of 128.
- The learning rate is set to 4×10^{-4} with cosine annealing as the scheduler.
- Initialization of our tracker backbone using pretrained MobileViT weights.
- During inference, we apply Hanning window on classification score map.

Comparison to Related Lightweight Trackers:

Tracker	GOT10k (server)			TrackingNet (server)			NfS30		LaSOT		fps
	$OR\uparrow$	$SR_{0.50}$ \uparrow	$SR_{0.75}$ \uparrow	$AUC\uparrow$	$P_{norm} \uparrow$	$P\uparrow$	$AUC\uparrow$	$FR\downarrow$	$AUC\uparrow$	$FR\downarrow$	(GPU)
LightTrack	0.582	0.668	0.442	72.9	79.3	69.9	0.582	0.146	0.524	0.116	99
Stark-Lightning	0.596	0.696	0.479	72.7	77.9	67.4	0.619	0.111	0.585	0.151	205
FEAR-XS	0.573	0.681	0.455	71.5	80.5	69.9	0.487	0.207	0.508	0.273	275
E.T.Track	0.566	0.646	0.425	74.0	79.8	69.8	0.589	0.172	0.597	0.162	53
MVT (ours)	0.633	0.742	0.551	74.8	81.5	71.9	0.603	0.085	0.553	0.137	175

- *MVT* has the best performance on server-based GOT10k and TrackingNet.
- Overall, *MVT* outperforms the related trackers in 7 out of 10 metrics.

• We retrain our model without concatenating the template and search region features inside the proposed Siam-MoViT block.

_	feature fusion	GOT10k		Track	ingNet	NfS30		LaSOT	
	in backbone	$OR\uparrow$	$SR_{0.50}$ \uparrow	$AUC\uparrow$	$P_{norm} \uparrow$	$AUC\uparrow$	$FR\downarrow$	$AUC\uparrow$	$FR\downarrow$
_	×	0.600	0.703	74.9	80.0	0.566	0.122	0.544	0.163
	✓(ours)	0.633	0.742	74.8	81.5	0.603	0.085	0.553	0.137

• Proposed feature fusion improves AUC and reduces FR on average.

Robustness Analysis:

- We compare the *FR* of our *MVT* on attributes from the LaSOT dataset.
- *MVT* is robust to target deformation and appearance changes.
- MVT has a higher FR while tracking small, fast-moving target objects, e.g., volleyball.

Comparison to State-of-the-art:

Tracker	GOT10k		Track	ingNet	$\#$ params \downarrow fp		<i>PS</i>
	$OR\uparrow$	$SR_{0.50}$ \uparrow	$AUC\uparrow$	$P_{norm} \uparrow$	(in millions)	GPU ↑	CPU ↑
DiMP-50	0.611	0.717	74.0	80.1	26.1	61.5	15.0
TransT	0.671	0.768	81.2	85.4	23.0	87.7	2.3
STARK-ST101	0.688	0.781	82.0	86.9	47.2	80	7.8
OSTrack-384	0.740	0.835	83.9	88.5	92.1	74.4	4.4
MixFormer-L	0.756	0.857	83.9	88.9	183.9	45.2	< 5
MVT (ours)	0.633	0.742	74.8	81.5	5.5	175.0	29.4
						(300*)	(70**)

TensorRT**, *ONNX-Runtime**

- State-of-the-art: Deployment of transformers has improved the performance, but at the cost of lowered tracking speed.
- In contrast, our *MVT* surpasses DiMP-50 with $4.7 \times$ fewer parameters while running at $2.8 \times$ and $2 \times$ its speed on GPU and CPU, respectively.

Conclusion

- We proposed a tracker that uses Mobile Vision Transformer, for the first time.
- Our tracker performed better than the related lightweight trackers, especially on server-based GOT10k and TrackingNet datasets.
- *MVT* runs at 70 *fps* on CPU, faster than second-best Stark-Lightning (50 *fps*).
- **Future work:** Deployment on embedded devices (*e.g.*, smartphones).

Project Webpage:

Tracker Code & Model

