Proposal-based Temporal Action Localization with Point-level Supervision

Yuan Yin, Yifei Huang, Ryosuke Furuta, Yoichi Sato =] B M VC
Institute of Industrial Science, The University of Tokyo F-faﬂ _l’*
- {yinyuan, hyf, furuta, ysato}@iis.u-tokyo.ac.jp ta 20235
~~ Problem ||  Approach ||  Experiments
Point-level Supervision (2) Foature Ggtraction & Malbadle e probability (b) Action Boundary Detection Evaluation metrics: Mean Average Precision (mAP)

starting

In the training phase, the low-cost yet efficient point-level
supervision is utlized. It only provides one labled frame for every
action instance.

i Our method significently surpasses the SOTA methods under point-level
. ; supervision and video-level supervision meanwhile performing
Lgpu 6 o o | © o comparably with some fully-supervised methods
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previous methods based on multi-instance learning tend to (b) Boundary Detection Module detects possible starting & ending time of action Method MAP @ loU(%) AVG

output incomplete predictions when there are some hard-to- Instances . | - 0.3 0.5 .
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feature to classify and evaluate action proposals

(d) To provide stronger supervision to the model, we design a k-medoids clustering
algorithm to generate dense pseudo labels

(e) We further introduce a novel contrastive loss to refine the video features

S — L Quantitative results on GTEA and BEOID dataset
e . incontplete prediction!_______ Qualitative results on THUMOS 14 dataset
To address this problem, we propose to localize actions by The visulaization results show that our method outputs more complete action predlctlons
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generating and evaluating action proposals of flexible duration
that involve more comprehensive temporal information.
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