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In this supplementary material, we first discuss the pseudo label generation algorithm
in detail. Then we present ablation studies to prove the effectiveness of vision-language
modeling and our method’s robustness to point-level annotations in different settings. Fi-
nally, we show some qualitative results and analyze the limitations and promising directions
to improve our method.

1 Pseudo Label Generation Algorithm
In this section, we will explain our pseudo label generation algorithm in detail. We first
perform constrained k-medoids clustering to find the action boundaries based on point-level
annotations. Then we mine background frames in order to provide more fine-grained super-
vision. Following this process, we will first demonstrate the constrained k-medoids cluster-
ing and then introduce the background mining.

As discussed in the main submission, in order to output the temporal boundaries of each
action instance and guarantee each action instance is consistent temporally, we find the tem-
poral location (boundary) that divides the frames between two consecutive point-level anno-
tations into two clusters (action instances) where the distance between the boundary and the
cluster medoid is minimized. Formally, given embedded features {xi}T

i=1 and point-level an-
notations {ti}N

i=1, ti < ti+1 of the input video, we aim to output the action boundaries {bi}N
i=0,

where ti−1 < bi < ti. A simple clustering algorithm to address this problem is to find the
boundary bi that:

bi = arg min
p

(
p

∑
j=ti

dist(x j,mi)+
ti+1

∑
j=p+1

dist(x j,mi+1)

)
(1)

where dist(·) is the Euclidean distance, mi = xti is the medoid for i-th cluster (action in-
stance). Intuitively, bi is an estimation of the decision boundary that partitions the frames in
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[ti, tt+1] into two clusters.
However, we argue that this simple approach cannot give a reasonable and robust estima-

tion. This is because in Equation 1, bi is calculated with “static” cluster medoids mi,mi+1,
which are kept the same during the clustering process. If cluster medoids are initialized
with “bad” point-level annotations that are not representative enough for the corresponding
clusters, then the resulting bi will be bad predictions. Inspired by the forward-backward
algorithm in [1], we design an efficient k-medoids clustering algorithm that keeps updating
the cluster medoids based on previous predictions. The motivation is as follows: if we get
the prediction of bi, then we already know that the frames in [bi−1,bi] belong to the same
i-th action instance (cluster). Therefore, we update mi as the average of xbi−1:bi and use the
updated medoid to estimate the next action boundary bi+1. We call it a forward pass and
denote the resulting forward predictions as {bF

i }N
i=0. Similarly, we can get backward pre-

dictions {bB
i }N

i=0 through a backward pass. We reach the final predictions for {bi}N
i=0 by

averaging forward and backward predictions. Algorithm 1 shows the pseudo-code of our
proposed clustering algorithm.

Algorithm 1 Constrained K-medoids Clustering Algorithm
Input: video length T ; embedded features {xi}T

i=1; point-level annotations {ti}N
i=1, ti <

ti+1
Output: action boundaries {bi}N

i=0 with the constraint that b0 = 0,bN = T, ti < bi < ti+1;
updated cluster medoids {mi}N

i=1
1: Init: cluster medoids {mi}= {xti}N

i=1; action boundaries bF
0 = bB

0 = 0,bF
N = bB

N = T
2: repeat
3: for i = 1, ...,N −1 do ▷ calculate forward predictions

4: bF
i = arg min

p

(
∑

p
j=ti dist(x j,

1
p−bF

i−1+1 ∑
p
k=bF

i−1
xk)+∑

ti+1
j=p+1 dist(x j,mi+1)

)
5: end for
6: for i = N −1, ...,1 do ▷ calculate backward predictions

7: bB
i = arg min

p

(
∑

p
j=ti dist(x j,mi)+∑

ti+1
j=p+1 dist(x j,

1
bB

i+1−p ∑
bB

i+1
k=p+1 xk)

)
8: end for
9: for i = 1, ...,N do

10: bi =
1
2

(
bB

i +bF
i
)

▷ average the forward and backward predictions
11: mi =

1
bi−bi−1+1 ∑

bi
j=bi−1

x j ▷ update cluster medoids
12: end for
13: until convergence
14: return {bi}N

i=0,{mi}N
i=1

The proposed clustering algorithm outputs action boundaries regardless of background
instances between actions. To generate more accurate pseudo labels, we also propose to
mine background frames. We assume that at least one background frame exists between two
consecutive action instances to separate them. As {bi}N

i=0 are predictions of the moments
when the transition between two consecutive action instances happens, they offer helpful
hints of background frames. We regard bi as the anchor frame for i-th background instance
and expand from it. Once the distance between the current frame and bi is larger than a
pre-defined threshold, then we denote the current frame as the boundary of i-th background
instance.
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Technically, given action boundaries {bi}N
i=0 and updated cluster medoids {mi}N

i=1, we

traverse from bi to ti and find the first temporal location δ
−
i such that: dist(mi,δ

−
i )

dist(mi,bi)
< ζ , where

ζ is a pre-defined threshold. The resulting δ
−
i is the left (start) boundary of i-th background

instance. Similarly, we traverse from bi to ti+1 and find the first temporal location δ
−
i such

that: dist(mi+1,δ
+
i )

dist(mi+1,bi)
< ζ . The resulting δ

+
i is the right (end) boundary of i-th background

instance. For the corner cases b0 and bN , we only calculate δ
+
0 and δ

−
N , and directly let

δ
−
0 = b0,δ

+
N = bN . Finally, we assign the frames in (δ−

i ,δ+
i ) as background frames and

denote ϕb
i = (δ−

i ,δ+
i ) as i-th pseudo labeled background instance. Meanwhile, we assign

the frames in [δ+
i−1,δ

−
i ] with the action labels of ti point-level annotation and denote ϕi =

(δ+
i−1,δ

−
i ,ci) as i-th pseudo labeled action instance.

2 Point-level Annotation Generation
As mentioned in the main submission, all the four benchmarks do not have official (human-
annotated) point-level annotations. Therefore, we need to simulate point-level annotations
from their available frame-level annotations. For each action instance, we denote the ground
truth start and end time as ts, te. Then we randomly sample one frame from the normal dis-
tribution with mean ts+te

2 and a standard deviation of 1 second. We denote such point-level
annotations as “Normal". To verify the robustness of our method to point-level annotations
under different distributions, we show the results on ActivityNet 1.3 in two additional distri-
butions. “Uniform" indicates that the point-level annotations are randomly sampled from a
uniform distribution [ts, te], and “Center" indicates that we directly use ts+te

2 as the point-level
annotations. From Table 1, we can see that our model is robust to point-level annotations
from different distributions.

Table 1: Comparison of our method’s performance on ActivityNet 1.3 trained with point-
level annotations from different distributions.

Point-level Annotations
mAP@IoU (%)

AVG0.5 0.75 0.95

Uniform 46.1 26.5 6.2 27.9
Center 48.7 27.5 6.5 28.8
Normal 48.3 27.8 7.0 29.1

3 Vision-language Modeling
To show the effectiveness of vision-language modeling (VLM), we compare two implemen-
tations of PEM. In the original implementation of PEM, we use two Transformers [3] as
vision encoder and text encoder respectively. In order to exclude the effect of VLM, we
remove the text encoder and replace the vision encoder with a larger Transformer so that the
number of parameters of PEM is unchanged. We use a linear layer on top of the output of
the vision encoder to directly output classification scores and confidence scores for propos-
als. We train the resulting model in the same experiment setting on ActivityNet 1.3 dataset,
and the results are shown in Table 2. We can see that with the help of VLM, the mAPs at
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all IoU thresholds improve, which shows that VLM is beneficial for more accurate action
localization.

Table 2: Abaltion studies of the PEM with vision-language modeling on ActivityNet 1.3.

Backbone of PEM
mAP@IoU (%)

AVG0.5 0.75 0.95

Transformer w/o VLM 47.5 27.1 6.4 28.1
Transformer w VLM 48.3 27.8 7.0 29.1

4 Qualitative Results
Figure 1 shows the qualitative results of our methods and the state-of-the-art MIL-based
method [2] on THUMOS 14 dataset. We can observe that our method outputs more pre-
cise predictions. Additionally, our proposal-based method greatly addresses the incomplete
localization error in the MIL-based method. Specifically, in Figure 1(a), [2] cannot distin-
guish the starting parts of “CleanAndJerk” well. This is because at the starting phase of
weightlifting, a man tends to move very slowly. As we discussed in the main submission,
these slow motions are difficult for MIL-based method to distinguish. In contrast, with the
help of action proposals that contain extensive temporal information, we successfully output
more accurate predictions. We also show an example with failure cases in Figure 1(b). Gen-
erally, the predictions of our method are still more accurate than the incomplete predictions
of [2]. But the third and the last predicted action instances are over-complete due to the short
duration and short interval between two consecutive actions.

5 Limitations and Future Work
As indicated by the second example of qualitative results, a major factor that may influence
the performance of our model is the high frequency and short duration of action instances
in the input videos. When there are a large number of short action instances in one video,
it will become very difficult for our BDM and PGM to generate action proposals accurately
because of the short duration of actions and short intervals between actions, thus leading to
performance degradation.

Table 3: Comparison results of our model trained under different levels of supervision on
ActivityNet 1.3.

Supervision
mAP@IoU (%)

AVG0.5 0.75 0.95

Frame-level 52.7 35.3 8.3 33.7
Point-level 48.3 27.8 7.0 29.1

Another limitation is the quality of the generated pseudo labels used for training because
the training of our model largely relies on those pseudo labels. We conduct an additional
experiment on ActivityNet 1.3 where our method is trained with frame-level labels (full
supervision) and we do not generate pseudo labels. In other words, this is equivalent to what
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(a) An example of “CleanAndJerk” 
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(b) An example of “Shotput” 
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Figure 1: Qualitative results on THUMOS 14. We present two examples from “CleanAnd-
Jerk” and “Shotput” respectively. In each example, we present the ground truth (top), the
final prediction of [2] (mid), and ours (bottom). Our method achieves obviously more com-
plete predictions.

we would get if the generated pseudo labels were totally correct. As shown in Table 3, more
accurate labels bring notable improvement in performance, which shows the importance of
improving the quality of pseudo labels. In other words, exploring a more effective pseudo
label generation algorithm is promising to improve our method, and we leave it for future
work.
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