

RoomNeRF: Representing Empty Room as Neural Radiance Fields for View Synthesis

ManKyu Kong, Seongwon Lee, Euntai Kim

School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea

Motivation

- One of the typical scenes to utilize NeRF is a **room.**
- The experience of being in a virtual room makes users curious about an empty room without furniture.

Problem

• Reconstructing an empty room with the object-existing images

Rendered Images and Depths

- **2D Inpainting techniques** are utilized to remove objects from room images.
- However, 2D inpainted images do not have **3D information**.
- The 3D information of an empty room can help NeRF to reconstruct a visually and geometrically consistent scene.

Input Images

Novel View Synthesis of Empty Room

3D Reconstruction of Empty Room

• Object masks, inpainted images, and room layouts are obtained in advance

Pattern Transfer

- All the walls in the room all have a certain pattern.
- To perform a **consistent visual reconstruction**, PT transfers the visual pattern of room wall to occluded regions.
- Two Step : Search the closest pattern from visible region and Transfer the pattern to occluded area. Original Image

 Matching Patch	Occluded Region (M \cap L _n)		
 Query Patch	Visible Region ($M^{c} \cap L_{n}$)		

using Video object segmentation, 2D inpainting module, and layout estimation.

- Our Network exploits the intrinsic properties of a room shared by each plane
- Losses from Pattern transfer module and Planar Constraint Module help NeRF to reconstruct an empty room.

$$L_{PT} = \|M \odot \{\hat{R}_i - K_{j'}\}\|^2 \qquad j' = \underset{j \in (M^c \cap L)}{\operatorname{argmax}} d(Q_i, K_j)$$
$$L_{PC} = \frac{1}{N_{Mask}} \sum_{n=1}^{N_{layout}} \sum_{D_n \in M \cap L_n} \left| \overrightarrow{A_n D_n} \times \overrightarrow{B_n D_n} \cdot \overrightarrow{C_n D_n} \right|$$

• Our total loss is as follows.

 $L_{total} = L_{color} + L_{depth} + \lambda_{PT}L_{PT} + \lambda_{PC}L_{PC}.$

Planar Constraint

- The Manhattan world assumes that all walls are flat.
- The occluded part of the wall should be **geometrically consistent** as a plane.

Experimental Results

Quantitative Results

	Seminar room			Office room			
	PSNR(↑)	SSIM(†)	$LPIPS(\downarrow)$	$PSNR(\uparrow)$	SSIM(↑)	$LPIPS(\downarrow)$	
Masked NeRF	21.69	0.8383	0.3781	20.61	0.9387	0.3409	
Inpainted NeRF	23.44	0.8672	0.3722	21.07	0.9509	0.3199	
NeRF-in [15]	23.35	0.8754	0.3420	21.42	0.8778	0.3310	
Object-removal [31]	22.60	0.8591	0.3644	21.26	0.9425	0.3237	
SPin-NeRF [20]	22.96	0.8643	0.2454	21.26	0.9467	0.2841	
RoomNeRF (Ours)	23.82	0.9148	0.1546	21.58	0.9580	0.2434	

Qualitative Results on LLFF and Replica dataset

Qualitative Results

