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1 Training Hyperparameters

Dataset CIFAR-100 ImageNet
Epochs 160 100
Batch Size 128 256
Weight Decay 5e-4 5e-5
Optimizer SGD SGD
LR 0.1 0.2
LR-Scheduler Cosine Cosine+Warmup
Momentum 0.9 0.9
Label Smoothing - 0.1

Table 1: Training hyperparameters used for all our experiments on CIFAR-100 and ImageNet
datasets.

Table 1 summarizes the training hyperparameters used for our experiments on CIFAR-
100 [3] and ImageNet [6] datasets. The chosen hyperparameters are selected based on
standard practices for the particular datasets and are kept the same regardless the network
architecture or the target sparsity ratio (in contrast to e.g. [4, 8] where the Weight Decay is
adjusted among different runs, based on the target sparsity ratio). By adopting commonly
used hyperparameters and keeping them unchanged among all our experiments we opted to
show that our method is able to achieve SoA results without the need of fine-tuning and
complicated training configurations.
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2 Impact of Threshold’s p-value

(a) (b)

Figure 1: A study of the effect of the 𝑝 value of the proposed family of thresholds on the
final sparse model accuracy. Results from ResNet-20 trained on CIFAR-100 (a) and the
corresponding thresholds used (b).

The proposed threshold with 𝑝 = 3 is compared with the ones with 𝑝 = 2 and 𝑝 = 4 in Figure
1. We observe that 𝑝 = 3 is preferable to 𝑝 = 2 based on the resulting final accuracy while
𝑝 = 4 results to no further improvement (Figure 1(a)). Due to that, 𝑝 = 3 is chosen to give
a fine balanced threshold between the two extremes, Hard and Soft thresholds respectively,
although, as shown, good results are obtainable even with values of 𝑝 near 3. A reasonable
explanation for the slight under-performance using 𝑝 = 2 is that the resulting threshold still
leads to a considerable amount of shrinkage (Figure 1(b)), thus induces more bias between
the thresholded weights and their dense counterparts. Notably, even for 𝑝 = 2 the results
are favorable compared to those obtained by using the Hard and Soft Thresholds, further
validating the robustness of our family of threshold operators.

3 Stability of the Sparsity Mask vs. Gradient Scaling

Figure 2: Plot of Pearson correlation coefficients between the sparsity mask obtained at the
end of each epoch and the mask at the end of training, for varying values of the gradient
scaling parameter 𝜃. Results from ResNet-20 trained on CIFAR-100.
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Figure 2 empirically validates that the gradient scaling parameter 𝜃 ∈ [0,1] influences the
stability of the sparsity mask, i.e. the mask that indicates which parameters are pruned and
which are active during sparse training. Specifically, for each experiment, using a specified
(constant) value for 𝜃, the Pearson correlation coefficients between the mask at the end of every
training epoch and the final mask, obtained at the end of training, are shown. Experiments
with 𝜃 near zero result to curves that converge to 1 more rapidly, compared to the ones from
experiments with 𝜃 close to unity. This indicates that when using 𝜃 near zero (or at the extreme
case 𝜃 = 0) the sparsity mask (and thus the sparsity pattern) is stabilized earlier during the
training process, compared to when using larger values of 𝜃. Based on our empirical analysis,
the suitable amount of stability for the sparsity mask relates to the sparsity target; The higher
the requested final sparsity the more beneficial is to keep the mask more stable (up to a
reasonable extent) to avoid destabilizing the highly pruned network. We note that the mask’s
stability is also studied in [7], where a soft top-k mask is computed by solving a regularized
Optimal Transportation problem in order to regulate its stability, although our approach
using gradient scaling (combined with the proposed threshold operator) is considerably less
computationally expensive while resulting to favorable final accuracies.

4 Feather Improves Pruning Backbones

(a) (b)

Figure 3: Feather improves the accuracy of common sparse training backbones: (a) GMP,
a uniform layer-wise sparsity pruning backbone (b) the ASL+ framework. Results from
ResNet-20 trained on CIFAR-100.

Combining the Feather module with existing backbones results to more accurate networks, as
shown in Figure 3. In 3(a) Feather is used to improve the accuracy of GMP [10], a layer-wise
magnitude pruning backbone that prunes all layers1 to the same (uniform) amount of sparsity,
gradually increasing the pruning ratio. Our module significantly improves the resulting
accuracy when combined with the very simplistic GMP backbone. Furthermore, in 3(b) we
compare the accuracy of the sparse models obtained with Feather combined with ASL+ [5]
and the ones using only ASL+, showing that our module leads to accuracy improvements for
the challenging sparsity ratios (95% and above).

1With the exception of the first convolutional layer, which was left dense when using GMP in our experiments
due to having a very small number of parameters.

Citation
Citation
{Tai, Tian, and Lim} 2022

Citation
Citation
{Zhu and Gupta} 2017

Citation
Citation
{Retsinas, Elafrou, Goumas, and Maragos} 2021



4 GLENTIS GEORGOULAKIS ET AL.: FEATHER - AN ELEGANT SPARSIFICATION SOLUTION

5 MobileNetV1 on ImageNet

Ratio 89% 94.1%
MobileNetV1 ( 4.21M Params): 71.95
GMP [10] 61.80 -
STR [4] 62.10 -
ProbMask [9] 65.19 60.10
ST-3 [8] 66.67 61.19
Feather-Global 68.13 63.63

Table 2: Top-1 accuracy of MobileNetV1 on ImageNet.

In Table 2 we provide additional experiments on ImageNet [6] using the MobileNetV1
[2] architecture. More specifically, we compare the accuracies obtained by using Feather
combined with the global pruning backbone with the ones from GMP [10], STR [4], ProbMask
[9] and ST-3 [8] which report results for the 89% and 94.1% sparsity ratios, using the same
number of epochs (100) and data augmentation as in our experiments. Our approach surpasses
the previous SoA by 1.46% and 2.44% Top-1 accuracy at the 89% and 94.1% sparsity ratios
respectively, a result that further validates Feather’s effectiveness and generalization abilities
on large datasets with different model architectures.

6 Accuracy vs. FLOP Measurements

Figure 4: Top-1 accuracy vs. FLOPs of ResNet-50 on ImageNet.

The Feather module, combined with the global pruning backbone, leads to favorable Top-
1 accuracy results over the ones from the baselines under similar FLOPs requirements of
the sparsified ResNet-50 [1], as shown by the frontier curve in Figure 4. We note that the
per-layer sparsity distribution obtained by the global pruning backbone by default does not
prioritize FLOPs reduction, while layer-wise methods such as GMP [10] and STR [4] tend
to result to sparse models with minimum FLOPs for a given sparsity ratio, although at a cost
of considerable accuracy drops.
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While extended analysis on optimizing FLOPs for a given sparsity target is not the scope
of this work, to further showcase the efficacy of Feather we experimented with biasing the
global pruning backbone towards pruning earlier layers more aggressively, as suggested in
[8]. With the FLOPs-biased global pruning backbone, training the ResNet-50 on ImageNet
at 99% sparsity, Feather resulted in a model with 67.2% Top-1 accuracy, now requiring only
42MFLOPs. Therefore, the superior accuracy of our sparse model was greatly preserved,
still achieving the best accuracy (by a 3.3% margin) among the baselines at the 99% ratio,
now for considerably fewer FLOP requirements, matching those of GMP (41MFLOPs), the
baseline resulting to the fewer FLOPs, although having accuracy more than 20% higher.
Having showcased Feather’s great potential at obtaining models with superior accuracy and
FLOPs, we leave further experimentation (possibly with more sophisticated backbones) as
future work.
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