

Domain-Adaptive Semantic Segmentation with Memory-Efficient Cross-Domain Transformers

1. Motivation

Transformer-based architectures have demonstrated to greatly outperform CNNs when applied to UDA tasks.

In semantic segmentation, current approaches still struggle to effectively learn context dependencies in the target domain.

This typically leads to the confusion of classes that have similar appearance, such as *road* and *sidewalk* in these examples from DAFormer [1].

3. Comparison with the State of the Art

We evaluate our approach on synthetic-to-real and clear-toadverse-weather UDA tasks using benchmarking datasets.

A comparison against SOTA UDA approaches that leverage Transformer architectures is provided.

Method	road	sidew.	build.	wall	fence	pole	t.light	t.sign	veget.	terrain	sky	person	rider	car	truck	pus	train	m.bike	bike	mloU
						Synt	hetic	-to-R	leal:	GTA	→ Ci	tysca	ipes	(Val.)						
DAFormer	95.7	70.2	89.4	53.5	48.1	49.6	55.8	59.4	<u>89.9</u>	<u>47.9</u>	92.5	72.2	<u>44.7</u>	92.3	74.5	<u>78.2</u>	65.1	55.9	61.8	68.3
CDTDA	96.5	73.9	<u>89.5</u>	56.8	<u>48.9</u>	<u>50.7</u>	<u>55.8</u>	63.3	<u>89.9</u>	49.1	91.2	72.2	45.4	92.7	<u>78.3</u>	82.9	<u>67.5</u>	<u>55.2</u>	63.4	<u>69.6</u>
Ours	<u>96.3</u>	<u>73.7</u>	89.9	<u>56.2</u>	49.7	52.0	56.8	<u>62.7</u>	90.0	49.1	<u>91.5</u>	<u>71.5</u>	44.6	<u>92.5</u>	79.4	77.8	71.6	56.8	<u>63.2</u>	69.7
Synthetic-to-Real: SYNTHIA → Cityscapes (Val.)																				
DAFormer	<u>84.5</u>	40.7	<u>88.4</u>	<u>41.5</u>	6.5	50.0	55.0	54.6	86.0	-	<u>89.8</u>	73.2	48.2	<u>87.2</u>	-	53.2	-	53.9	61.7	60.9
CDTDA	83.7	<u>42.9</u>	87.4	39.8	<u>7.5</u>	50.7	<u>55.7</u>	53.5	<u>85.9</u>	-	90.9	74.5	<u>47.2</u>	86.0	-	<u>60.2</u>	-	57.8	<u>60.8</u>	<u>61.5</u>
Ours	86.0	44.9	88.7	44.0	7.9	<u>50.3</u>	56.0	<u>54.0</u>	85.6	-	88.4	<u>73.8</u>	46.2	87.7	-	61.5	-	<u>55.8</u>	60.3	62.0
Clear-to-Adverse Weather: Cityscapes → ACDC (Test)																				
DAFormer	<u>58.4</u>	<u>51.3</u>	84.0	42.7	<u>35.1</u>	50.7	30.0	57.0	74.8	52.8	51.3	58.3	32.6	82.7	58.3	54.9	82.4	44.1	50.7	55.4
CDTDA	57.6	43.7	85.1	<u>43.5</u>	33.9	<u>50.1</u>	<u>42.9</u>	<u>53.9</u>	72.8	<u>52.9</u>	<u>52.2</u>	<u>59.4</u>	<u>34.7</u>	83.6	<u>60.4</u>	68.7	84.3	41.4	53.0	56.5
Ours	69.0	53.1	<u>84.7</u>	45.8	36.0	<u>50.1</u>	43.2	57.0	<u>73.4</u>	54.2	65.9	59.9	37.0	<u>83.0</u>	65.8	<u>62.3</u>	<u>83.9</u>	<u>42.3</u>	<u>51.5</u>	58.8

→ Our method leads to more effective learning of context relationships in the target domain, resulting in better distinction of visually similar classes (road/sidewalk, road/sky, wall/fence/building, etc.).

2. UDA Self-Training with Memory-Efficient Cross-Domain Transformers

We present a new Transformer block combining intra- and cross-domain attention for better source-target feature alignment.

It can be easily incorporated into state-of-the-art self-training UDA frameworks to enhance knowledge transfer.

Training loss:

 $\mathcal{L} = \mathcal{L}_S + \mathcal{L}_T + \mathcal{L}_{TS}$

Image

DAFormer

Ours

Ruben Mascaro Lucas Teixeira Margarita Chli Vision for Robotics Lab ETH Zurich & University of Cyprus

4. Architecture Evaluation

Ground Truth

Architecture	mloU	Throughput
DAFormer	68.1 ± 0.7	0.70 it/s
CDTrans	68.8 ± 0.4	0.44 it/s
CDTDA	68.9 ± 0.6	0.37 it/s
Ours	69.7 ± 0.4	0.52 it/s

References

- L. Hoyer et al., "DAFormer: Improving Network Ar Domain-Adaptive Semantic Segmentation," CVPR
- et al., "CDTrans: Cross-Domain Trar Adaptation," ICLR 2022.
- K. Wang et al., "Exploring Consistency in Cro Adaptive Semantic Segmentation," ICCV 2023.

The 34th British Machine Vision Conference 20th - 24th November 2023, Aberdeen, UK

chitectures and Training Strate 2022.	egies for
sformer for Unsupervised	Domain
oss-Domain Transformer for	Domain

Code

