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1 Persistent Homology-based HPM

1.1 Persistent Homology on Image

Figure 1: Illustration of persistent homology on image. Left figure is a likelihood map p.
The Middle bottom one shows the binarized maps of p with different thresholds. As the
threshold t deceasing, the foreground of current snapshot is covered by the counterpart of
the next moment. Here we only consider 0-dimensional features, which refer to connected
components and are masked in different colors. The middle top persistent bars in different
colors correspond to the lifetime of different topological features. The start and end t of
these bars form the points of the right persistent diagram.

In the context of segmentation models, the output p is a likelihood matrix. Binarization
need to be performed to obtain the predicted label. Given the probability threshold t, bina-
rized prediction pt has the same shape with p, where for each pair (pt , p) that taken from the
same position of pt and p we have:

pt =

{
1, p >= t;
0, otherwise. (1)

We use f t to denote the foreground of pt . Obviously, the value of t influences the resulting
pattern ft , thereby affecting its topological structures that refers to connected components for
0-dimension and holes for 1-dimension [3, 4]. As illustrated in Fig. 1, persistent homology
captures all topological structures through a filtration F , which is a monotonically growing
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sequence generated by progressively decreasing the threshold t:

F =
[

f t1 , f t2 , · · · , f tn
]
, t1 > t2 > · · ·> tn; (2)

and we have:
f t1 ⊆ f t2 ⊆ ·· · ⊆ f tn . (3)

During this process, some new topological structures emerge while existing ones are killed.
The thresholds corresponding to the birth and death of a topological structure constitute a
point in the persistent diagram that can be calculated efficiently through cubical complex
[1, 8, 10]. Each birth or death occurs at a specific pixel. This kind of pixels are called critical
points and they introduce topological changes.

1.2 Topology-Preserving Cost Function by Hu et al. [6]
Hu et al. [6] propose a topology-preserving cost function based on persistent homology. They
calculate the persistent diagrams Dgm(p) and Dgm(y) for prediction p and ground-truth y,
respectively. Note that all points from Dgm(y) have the same coordinate (1,0). A distance-
based matching algorithm [7] is further performed to establish correspondences between the
points in these two diagrams. The unmatched points in Dgm(p) are considered as noise and
projected onto the diagonal line. As we mentioned before, every point in persistent diagram
consists of the birth and death threshold of a topological feature, and therefore corresponds
two critical points. For a given point dp ∈ Dgm(p) and its critical points (cbirth,cdeath), if dp
is successfully matched to a point dy ∈ Dgm(y), the loss to align dp and dy can be formulated
as:

lDgm(dp) = (1.0− cbirth)
2 + c2

death. (4)

Otherwise, dp ∈ Dgm(p) is projected to the diagonal by:

lDgm(dp) = (cdeath − cbirth)
2. (5)

The overall cost function is calculated as following:

LDgm = ∑
dp∈Dgm(p)

lDgm(dp). (6)

Figure 2: Drawbacks of Hu et al. [6]. (a) Aligning two persistent diagram can leads to
geometrically incorrectness. (b) The topology of a likelihood map can be very complicated.
Subtle variation of pixel values result in a large number of trivial critical points.
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1.3 Persistent Homology-based HPM

Hu et al. [6] has two noticeable drawbacks. Firstly, aligning the persistent diagrams is not
sufficient from a geometric perspective. Fig. 2(a) shows that minimizing LDgm leads to two
possible results. Both of them have the correct topology, while the top one are geometrically
incorrect. Secondly, the topology of a likelihood map could be very complicated, resulting in
a large number of critical points as show in Fig. 2(b). Therefore, according to the authors, the
matching process can be quite difficult for large image patches. Also, most of critical points
are introduced by slight difference among pixels and are actually trivial and even harmful
for topology preservation. In their experiment, the patch size is limited to (65× 65) to get
reasonable results.

Figure 3: Illustration of persistent homology-based HPM: cubical complex of prediction is
calculated to generate a set of critical points, each of which corresponds to the birth or death
of a topological structure. Mis-segmented critical points are marked as hard pixels.

The persistent homology-based HPM (PHPM) is an improved version of Hu et al. [6].
Instead of directly matching and aligning the critical points like Hu et al. [6], we use crit-
ical points to mine hard pixels. A pre-processing is performed before the computation of
persistent homology, so that the topology analysis can pay most attention on mis-segmented
pixels. PHPM can be formulated as follows:

Hp =
⋃

d∈D

Cd ( f (p,y, t)) . (7)

The set D encompasses the dimensions of topological features that hold our interest, Cd(·)
denotes the function to get the d-dim critical points of input image, f is the pre-processing
function that increases the intensity of all true positive pixels to 1.0 and all true negative
pixels to 0.0. It returns a matrix p f with the same shape as input p and y. For each quadruplet
(p f , pt , p,y) that consists of elements taken from the same position of p f , pt , p and y, we
have:

p f =

{
p, if pt ̸= y;
y, otherwise. (8)

Fig. 3 gives an illustration of PHPM. Training with PHPM leads to correct topology and
geometry. Also, the pre-process significantly reduce the number of trivial topological fea-
tures. So PHPM can be applied on larger image patches and demonstrates a higher topology-
preserving ability comparing to [6].
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1.4 Expreimental Results

Table. 1 quantitatively evaluate the performance of models training with different loss func-
tions on 6 public datasets [2, 5, 9, 11]. The size of image patches is 256 × 256 for 2D data
and 128 × 128 × 72 for 3D data. Comparing to Hu et al. [6], training with PHPM achieve
higher scores for all metrics, especially for topology-aware metrics, which means that PHPM
is more advanced version of [6] and demonstrates a better topological preservation capability.

Table 1: Quantitative experimental results.
Dataset Method Dice mIoU VOI ARE β -0 Error β -1 Error

CREMI-A U-Net + Hu et al. 0.9134 0.8407 0.4002 0.2332 2.296 24.752
U-Net + PHPM 0.9133 0.8405 0.3819 0.2060 2.112 20.352

CREMI-B U-Net + Hu et al. 0.8538 0.7497 1.1434 0.6199 18.128 64.064
U-Net + PHPM 0.8540 0.7502 1.0444 0.5724 15.672 56.056

CREMI-C U-Net + Hu et al. 0.8937 0.8083 0.6974 0.3678 6.878 47.496
U-Net + PHPM 0.8934 0.8077 0.6383 0.3243 5.772 39.089

ISBI12 U-Net + Hu et al. 0.8313 0.7122 0.6869 0.1555 2.967 7.933
U-Net + PHPM 0.8313 0.7123 0.6805 0.1400 3.200 7.583

Roads U-Net + Hu et al. 0.7237 0.5755 0.7605 0.3470 10.492 29.820
U-Net + PHPM 0.7295 0.5823 0.7339 0.3372 8.826 29.232

ICAS-d (3D) U-Net + Hu et al. - - - - - -
U-Net + PHPM 0.6059 0.4407 0.0091 0.0012 4.590 0.000
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