

Weakly-supervised Spatially Grounded Concept Learner for Few-Shot Learning

*Gaurav Bhatt¹, *Deepayan Das², Leonid Sigal¹, Vineeth N Balasubramanian²
¹The University of British Columbia, Vancouver
²Indian Institute of Technology, Hyderabad

Aim

- We propose a **visually grounded concept learner** (VG-CoL) that enforces semantic structure over spatial representations, overcoming limitations of existing methods^[1,2] that either **lack semantics** or **strong supervision**
- Introduce a regularization technique to ensure learned concepts are semantic, disentangled, and aligned with weights of image-level concept/attribute classifiers

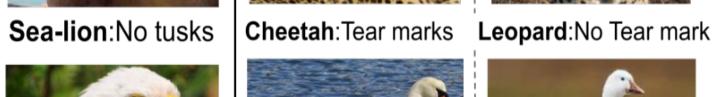
Concepts

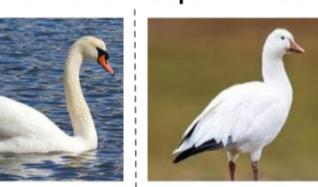


Learning Objective

- A^k enhances feature matching for concept k, but does not reveal the spatial interactions between the concepts.
- We address this by introducing a linear layer, computing weighted sum of prototypes: $\bar{\mathbf{P}}_s = \mathtt{Linear}([\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_K]), \text{ where } \bar{\mathbf{P}}_s \in \mathbb{R}^{H \times W \times K}$
- Next we compute the product of the attention score matrix **A** and $\bar{\mathbf{P}}_s$ then concatenate this with the original features to produce the VGCoL block output: $VGCoL_{out} = \mathbf{f} \oplus \left(\mathbf{A} \odot \boldsymbol{\sigma}(\bar{\mathbf{P}}_s)\right)$
- Our Network has multiple blocks of VGCoL stacked on top of each other
- We perform classification on the output of final VGCoL block

Zebra:Stripes Horse:No stripes





ChippingClay Sparrow:StripedGolden Eagle:BrownBald EaSparrow:Rusty CrownCrownHeadHead

Bald Eagle:White Swan:Long Neck

Goose:Short Neck

Fig: Images showing different species of animals and birds and the various traits that help us identify them.

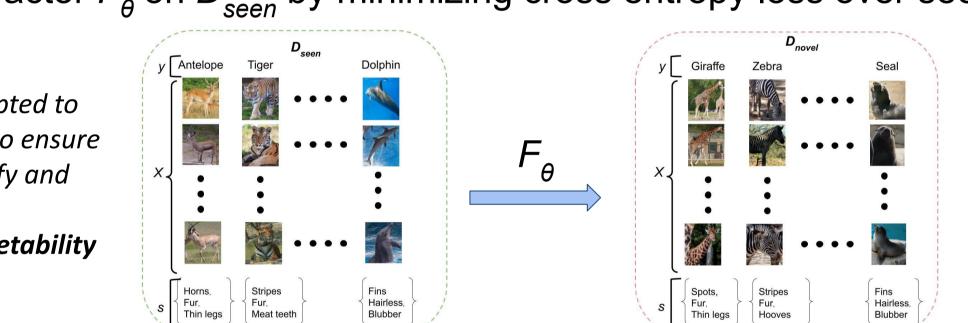
- Humans quickly identify species using key features like stripes or crown colors, eliminating the need for countless examples.
- In this work we seek to localize semantic concepts in images, aiming to enhance deep networks' efficiency in classification with minimal examples.

Problem Formulation

Tasks:

- 1. Train a model on a dataset with abundant annotations from seen classes D_{seen}
- 2. Adapt it to samples from a disjoint set of novel classes D_{novel} with limited labels **Overview:**
- 1. Learn feature extractor F_{θ} on D_{seen} by minimizing cross entropy loss over seen classes

Fig: Feature extractor F_{θ} Is trained on D_{seen} and adapted to D_{novel} . We use attributes **s** to ensure



- During testing, the output of the final VGCoL block is averaged to obtain prototype representation of each class c_k
- To induce semantics into concept prototypes we introduce semantic decoder, a simple neural network that outputs logits equivalent to attributes present in a dataset
- The semantic decoder computes softmax over concepts:

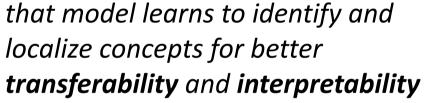
$$p(\mathbf{s}_{k} = 1 | \mathbf{x}) = \frac{\exp\left(\mathbf{W}_{[k,:]}^{s} \cdot \operatorname{AvgPool}(\mathbf{f})\right)}{\sum_{k} \exp\left(\mathbf{W}_{[k,:]}^{s} \cdot \operatorname{AvgPool}(\mathbf{f})\right)}$$

 W^s are trainable parameters of the semantic decoder. W^s ∈ KxC. Here Kth row is associated with Kth concept

Optimization

- In addition to training VGCoL network using classification loss (L_{cls}) on the D_{seen}
- We use cross entropy loss, termed L_{sem} to ensure each row of W^s of semantic decoder corresponds to semantic concepts such as "stripes" or "spot".
- We align the semantic decoder weights with prototypes using L₁ loss, termed as L_{align} in our work.
- 3. Given the frequent co-occurrence and correlation of visual attributes, we employ an orthogonality constraint to prevent concept entanglement, formulated as:

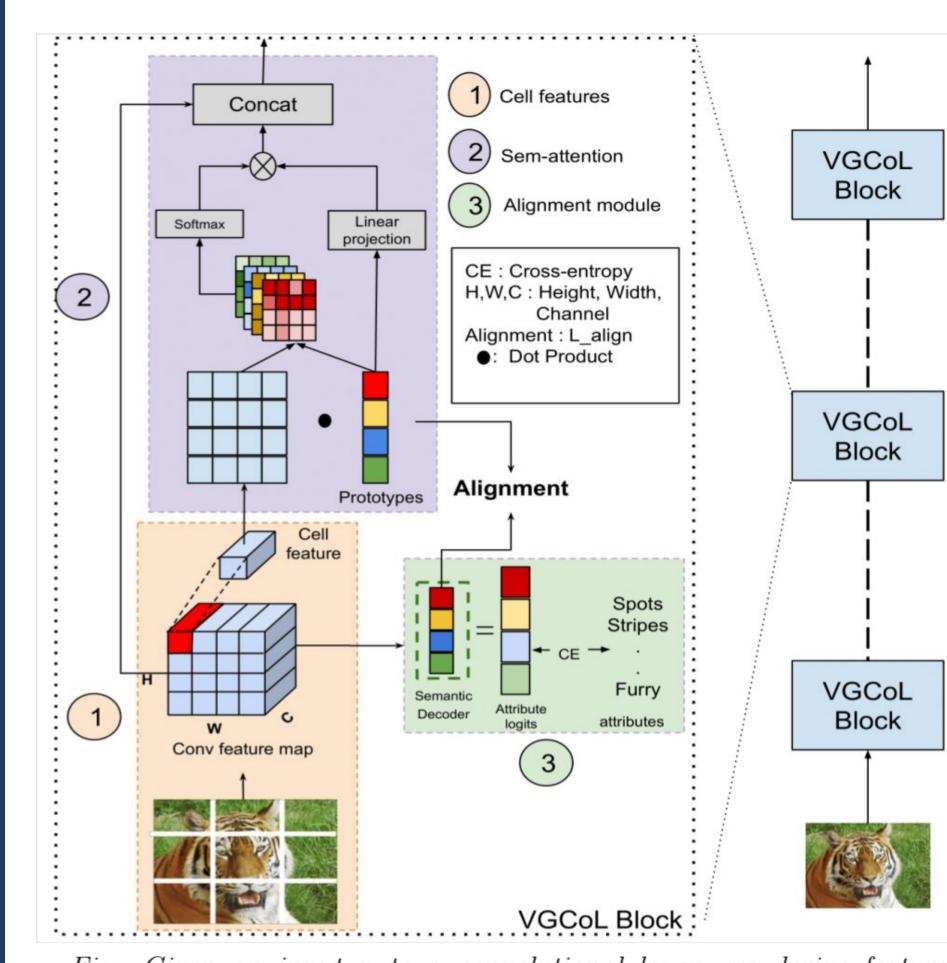
$$\mathcal{L}_{ortho} = |\mathbf{W}^{\mathbf{s}} \cdot (\mathbf{W}^{\mathbf{s}})^T - \mathbf{I}|_{\mathbf{s}}$$



2. For Inference, we use the standard *M-way, N-shot classification*, where we minimize the distance between query and cluster center of the support set

$$\hat{y} = \underset{m}{\operatorname{arg\,max}} d(\mathcal{F}_{\theta}(\mathbf{x}^{q}), c_{m}); \ \mathbf{c}_{m} = \frac{1}{N} \sum_{(\mathbf{x}, y, \mathbf{s}) \in \mathcal{S}, y = m} \mathcal{F}_{\theta}(\mathbf{x})$$

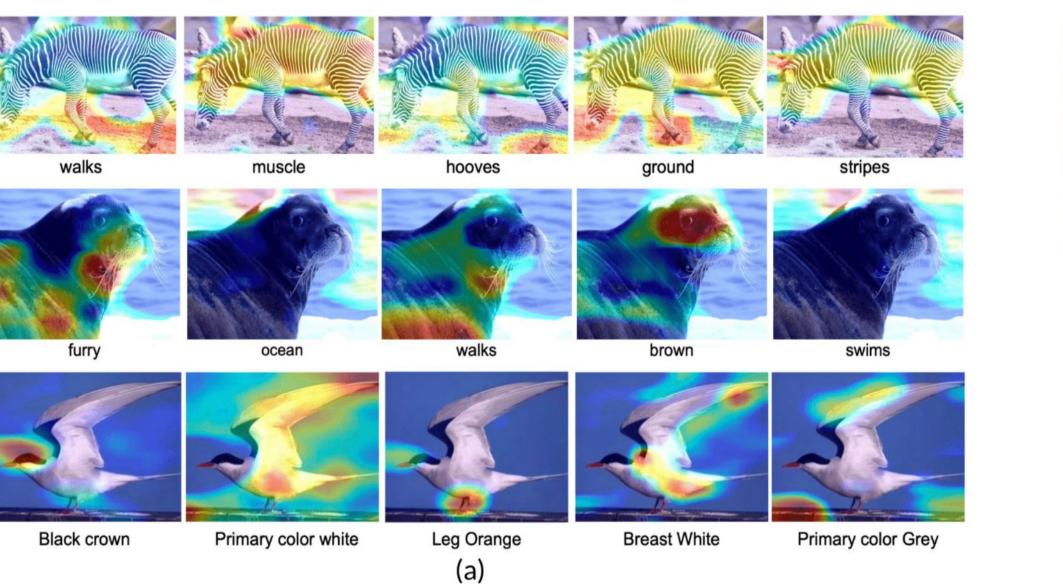
VG-CoL Network



- Given input x to a conv layer, we extract features f where f∈R^{HxWxC}
- We consider columns of f as cell features, f_{ij}∈R^c
- Our goal is to make f_{ij} encode visual concepts, such as color and texture, enabling quick generalization to novel categories with minimal examples.

Semantic Co-Attention

4. The network is jointly trained to optimize all losses: $Loss = \mathcal{L}_{cls} + \alpha \mathcal{L}_{sem} + \beta L_{align} + \lambda \mathcal{L}_{ortho}$



(a)Visualizing the similarity matrix **M**. Three samples and 5 concepts are illustrated. Red corresponds to strong grounding of the concept. (b) and (c) shows extracted patches around the concepts **stripes** and **spots**, respectively.

Experiments and Results

• Diverse data set:

 We use Caltech UCSD Birds (CUB), Scene Classification with Attributes (SUN) and Animals with Attributes 2 (AWA2).

• Methods:

- We compare the performance of our model with state-of-the-art few-shot methods
- We also present a strategy where we freeze the entire network except the semantic
- We introduce semantic/concept prototypes P_s consisting of p_k for each concept k with each prototype's dimension equal to the image feature channels (C).

• For each prototype **p**_k, a

similarity map **M**_k is

computed using dot

product between f_{ii} and P_{k}

- Fig: Given an input x to a convolutional layer, we derive features f where $f \in \mathbb{R}^{H \times W \times C}$. Each column of f, denoted as f_{ij} and belonging to \mathbb{R}^C , represents cell features that capture local information at specific spatial locations. Our objective is to ensure f_{ij} encodes visual concepts like color and texture, facilitating swift adaptation to novel categories with few examples.
- Once all the similarity maps are generated, we compute the attention score over each similarity matrix

References

- 1. Weijian Xu and Yifan xu and Huaijin Wang and Zhuowen Tu. Attentional Constellation Nets for Few-Shot Learning. In ICLR 2021
- 2. Tokmakov, Pavel and Wang, Yu-Xiong and Hebert, Martial. *Learning compositional representations for few-shot recognition.* In ICCV 2019

decoder and optimize by minimizing the combined semantic and alignment losses, aiming to instill prior semantic knowledge from the support set of novel classes.

Results:

	CUB		SUN		AWA2	
Method	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
ProtoNets [33]	43.4	67.8	37.1	63.1	41.9 ± 0.8	54.86 ± 0.7
MatchingNets [38]	48.5	69.2	41.0	60.4	-	_
RelationNets [35]	39.5	67.1	35.1	63.7	-	-
COMET [1]	67.9 ± 0.9	85.3 ± 0.5	-	-	-	-
CompoNets [37]	53.6	74.6	45.9	67.1	-	
ConstellationNet - Conv-4	67.8 ± 0.9	85.7 ± 0.6	49.7 ± 0.8	68.2 ± 0.7	44.4 ± 0.7	60.0 ± 0.6
ConstellationNet - ResNet-12	70.1 ± 0.8	86.3 ± 0.5	50.3 ± 0.8	70.1 ± 0.7	47.3 ± 0.7	63.3 ± 0.6
Ours - Conv-4	66.7 ± 0.5	83.1 ± 0.6	52.5 ± 0.8	69.1 ± 0.7	45.7 ± 0.7	61.5 ± 0.6
Ours - ResNet-12	70.5 ± 0.3	87.3 ± 0.5	54.6 ± 0.7	71.2 ± 0.6	47.5 ± 0.6	65.9 ± 0.6
Ours - Conv-4 finetune	66.8 ± 0.9	83.2 ± 0.6	54.4 ± 0.8	71.5 ± 0.7	46.6 ± 0.3	62.1 ± 0.7
Ours - ResNet-12 finetune	$\textbf{73.8} \pm \textbf{0.8}$	$\textbf{90.0} \pm \textbf{0.3}$	$\textbf{57.9} \pm \textbf{0.7}$	$\textbf{75.6} \pm \textbf{0.7}$	$\textbf{50.1} \pm \textbf{0.9}$	$\textbf{70.0} \pm \textbf{0.9}$

Conclusion

• In this work we introduced a weakly supervised, visually grounded concept learner enhancing few-shot performance, yielding interpretable VGCoL predictions for novel classes, and demonstrating potential in zero-shot object segmentation.