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S1 Pseudocode
Algorithm 1: Loss calculation for one minibatch with MCSC.

1 Input: Batch of images X = X l ∪Xu including labelled images and unlabelled
images, ground-truth Y l for labelled images, temperature constant τ , and N the
number of feature scales.

2 Output: Total losses Lc for CNN and Lt for Transformer.

3 Pu/l
∗ = softmax{C∗(E∗(Xu/l))} // Compute class probability maps on unlabelled
data Xu and labelled data X l

4 Y u
∗ = argmax(Pu

∗ ) // Compute pseudo one-hot label map on unlabelled data Xu

5 # Supervised Supervision
6 Lsup(∗) = Ldice(Pl

∗,Y
l
∗)+Lce(Pl

∗,Y
l
∗)

7 # Cross Pseudo Supervision
8 Lcps(c) = Ldice(Pu

c ,Y
u

t )

9 Lcps(t) = Ldice(Pu
t ,Y

u
c )

10 # Multi-Scale Cross Supervised Contrastive Learning
11 for n = 1 . . .N do
12 F∗ = H∗(E∗(X)), F = concat(Fc,Ft) //Get a feature batch F from layer n of

extractors followed by projectors
13 M = (h/h′)2, {Am}M

m=1 = F // divide F into M groups of patches A

14 Define: Lbcl(A) =− 1
|A| ∑ai∈A

1
|Ay|−1 ∑

p∈Ay\{i}
log exp(ai·ap/τ)

∑ j∈YA
1

|A j |
∑

ak∈A j
exp(ai·ak/τ)

//ai is the

ith feature sample, Ay ⊆ A is the subset of features associated with class y
where Yt/c defines the class of Fc/t , and YA is the set of all classes present in A

15 Lcl_n =
1
|M| ∑

M
m=1Lbcl(Am) // Average over M groups to get the loss of F

16 end
17 Lcl = (Lcl_1 + . . .+Lcl_N) // Sum each scale balanced contrastive loss
18 L∗ = Lsup(∗)+wcpsLcps(∗)+wclLcl

19 Return: Lc,Lt
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Algorithm 1 gives the pseudocode for MCSC processing a single mini-batch of data.

S2 Implementation details
We implemented our method in PyTorch. We used simple data augmentations to reduce
overfitting: random cropping with a 224× 224 patch, random flipping and rotations. All
methods were trained till validation-set convergence (which was by 40,000 iterations). We
selected the best checkpoint for evaluation based on validation set performance. Our method
was trained using AdamW [3] with a weight decay of 5×10−4. We utilized the poly learning
rate schedule, initialized at 5×10−4 for CNN and 1×10−4 for Transformer. The batch sizes
were 4 and 10 respectively, with half labeled and half unlabeled images. For our MCSC
module, each projector H∗ has two linear layers, where the first linear layer changes the
dimension of feature map to 256 channels; the last layer has 128 channels and shares its
parameters between the two models. In Eq.(2), temperature τ = 0.1. We use multi-scale fea-
ture maps from three layers of E∗, with sizes of 256×256, 56×56, and 28×28 respectively,
and the size h′ of a patch was set to 19, 28 and 14 accordingly. All experiments were run on
one (for ACDC) or two (for Synapse) RTX 3090 GPUs.

S3 Full results on ACDC and Synapse
Table S1 summarizes ACDC segmentation results of our MCSC and all baselines on 7 and
3 labelled cases, and results of our MCSC, UNet-LS and CTS on 1 case. Segmentation
visualizations from our method, LS and CST trained on 7 cases on ACDC are shown in
Figure S1.

Table S2 shows the segmentation results of all methods on Synapse dataset under two
settings (4 and 2 labelled cases). Figure S2 shows segmentation visualizations for UNet with
limited supervision, CPS, CTS and our method MCSC, on 4 cases of Synapse.

Labeled Methods DSC↑ HD↓ Aorta Gallb Kid_L Kid_R Liver Pancr Spleen Stom

18 cases(100 %) UNet-FS 75.6 42.3 88.8 56.1 78.9 72.6 91.9 55.8 85.8 74.7
nnFormer [10] 86.6 10.6 92.0 70.2 86.6 86.3 96.8 83.4 90.5 86.8

4 cases(20 %)

UNet-LS 47.2 122.3 67.6 29.7 47.2 50.7 79.1 25.2 56.8 21.5
UAMT 51.9 69.3 75.3 33.4 55.3 40.8 82.6 27.5 55.9 44.7

ICT 57.5 79.3 74.2 36.6 58.3 51.7 86.7 34.7 66.2 51.6
CCT 51.4 102.9 71.8 31.2 52.0 50.1 83.0 32.5 65.5 25.2
CPS 57.9 62.6 75.6 41.4 60.1 53.0 88.2 26.2 69.6 48.9
CTS 64.0 56.4 79.9 38.9 66.3 63.5 86.1 41.9 75.3 60.4

MCSC (Ours) 68.5 24.8 76.3 44.4 73.4 72.3 91.8 46.9 79.9 62.9

2 cases(10 %)

UNet-LS 45.2 55.6 66.4 27.2 46.0 48.0 82.6 18.2 39.9 33.4
UAMT 49.5 62.6 71.3 21.1 62.6 51.4 79.3 22.8 58.2 29.0

ICT 49.0 59.9 68.9 19.9 52.5 52.2 83.7 25.4 53.2 36.0
CCT 46.9 58.2 66.0 26.6 53.4 41.0 82.9 21.2 48.7 35.6
CPS 48.8 65.6 70.9 21.3 58.0 45.1 80.7 23.5 58.0 32.7
CTS 52.0 63.7 73.2 12.7 67.2 64.7 82.9 31.7 40.9 42.4

MCSC (Ours) 61.1 32.6 73.9 26.4 69.9 72.7 90.0 33.2 79.4 43.0
Best is reported as bold, Second Best is underlined.

Table S2: Comparison with different models on Synapse. The performance is reported by
DSC (%) and HD (%), as well as the DSC value of each types of organs.
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Labeled Methods Mean Myo LV RV
DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓

70 cases (100%) UNet-FS 91.7 4.0 89.0 5.0 94.6 5.9 91.4 1.2
BATFormer [2] 92.8 8.0 90.26 6.8 96.30 5.9 91.97 11.3

7 cases (10%)

UNet-LS 75.9 10.8 78.2 8.6 85.5 13.0 63.9 10.7
MT [7] 80.9 11.5 79.1 7.7 86.1 13.4 77.6 13.3

DCT [6] 80.4 13.8 79.3 10.7 87.0 15.5 75.0 15.3
UAMT [9] 81.1 11.2 80.1 13.7 87.1 18.1 77.6 14.7

ICT [8] 82.4 7.2 81.5 7.8 87.6 10.6 78.2 3.2
CCT [5] 84.0 6.6 82.3 5.4 88.6 9.4 81.0 5.1
CPS [1] 85.0 6.6 82.9 6.6 88.0 10.8 84.2 2.3
CTS [4] 86.4 8.6 84.4 6.9 90.1 11.2 84.8 7.8

MCSC (Ours) 89.4 2.3 87.6 1.1 93.6 3.5 87.1 2.1

3 cases (5%)

UNet-LS 51.2 31.2 54.8 24.4 61.8 24.3 37.0 44.4
MT [7] 56.6 34.5 58.6 23.1 70.9 26.3 40.3 53.9

DCT [6] 58.2 26.4 61.7 20.3 71.7 27.3 41.3 31.7
UAMT [9] 61.0 25.8 61.5 19.3 70.7 22.6 50.8 35.4

ICT [8] 58.1 22.8 62.0 20.4 67.3 24.1 44.8 23.8
CCT [5] 58.6 27.9 64.7 22.4 70.4 27.1 40.8 34.2
CPS [1] 60.3 25.5 65.2 18.3 72.0 22.2 43.8 35.8
CTS [4] 65.6 16.2 62.8 11.5 76.3 15.7 57.7 21.4

MCSC (Ours) 73.6 10.5 70.0 8.8 79.2 14.9 71.7 7.8

1 case
UNet-LS 26.4 60.1 26.3 51.2 28.3 52.0 24.6 77.0
CTS [4] 46.8 36.3 55.1 5.5 64.8 4.1 20.5 99.4

MCSC (Ours) 58.6 31.2 64.2 13.3 78.1 12.2 33.5 68.1
Best is reported as bold, Second Best is underlined.

Table S1: Segmentation results on DSC(%) and HD(mm) of our method and baselines on
ACDC, across different numbers of labelled cases. Bold is the best result, and underlined
2nd-best, for each number of cases.
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Figure S1: Segmentation visualizations from our method, LS and CST trained on 7
labelled cases on ACDC.
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Figure S2: Segmentation visualizations from our method, LS, CPS and CST trained on 4
labelled cases on Synapse.

S4 Visualization of features with contrastive learning
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Figure S3: Visualization of embedding features from our method and standard SCL after
applying t-SNE on test data of ACDC and Synapse respectively. Each case represents one
slice from a different patient.

Figure S3 shows visualizations of embedding features applying t-SNE on a single slice of
two cases from the test data of ACDC and Synapse respectively. The models are trained with
7 cases (ACDC) and 4 cases (Synapse). Different colors represent different classes. Features
are taken from the feature map after the projector with scale of 256×256, and each point in
the figure is the embedding of one pixel. The standard SCL is the second row of Table 3 in
the main text (SCL+DB). For ACDC, the left case 1 shows our method better separates RV
from the other two foreground classes, and reduces the overlap between LV and Myo. For
the case 2, the foreground clusters of ours are tighter. A more clear and consistent effect can
be seen on Synapse. For the case on the left, our method makes the liver, spleen and stomach
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much better separated than standard SCL. A similar situation also occurs with the left and
right kidneys for the case 2. Overall, through cross labelling, averaging the contribution
of each class in SCL, and contrasting multi-scale feature maps, our method obtains a better
embedding representations for segmentation, where features within the same class are pulled
closer and features for different class are spread farther apart.
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