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S1 Pseudocode

Algorithm 1: Loss calculation for one minibatch with MCSC.

1 Input: Batch of images X = X/ UX" including labelled images and unlabelled
images, ground-truth Y/ for labelled images, temperature constant 7, and N the
number of feature scales.

2 Output: Total losses L. for CNN and £, for Transformer.

3 P! = softmax{C,(E, (X))}

Y = argmax(P")

# Supervised Supervision

‘Csup(*) = ‘Cdice(Piv Y*l) + £C£’(P>I{7 Y*l)

# Cross Pseudo Supervision

[’cps(c) = Luice (Pcu) qu)

'Ccps(t) = Cdice(Ptuvycfl)

10 # Multi-Scale Cross Supervised Contrastive Learning
1 forn=1...Ndo

12 F. = H,(E.(X)), F = concat(F, F})

R R B Y

B3| M= (h/W)? {A"MM_ =

14 Define: Ly (A) = — Y, o4 — 1 exp(ai-ap/T)
@)=~ laeamer T loggo 1, 5, v

15 »Cclfn = ﬁ Z%:l 'Cbcl (Am)

16 end

17 Lo = ([-:cl_l —+...+ ﬁc/_N)

18 L= ‘Csup(*) + chsﬁcps(*) +we Ll
19 Return: L., L,
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Algorithm 1 gives the pseudocode for MCSC processing a single mini-batch of data.

S2 Implementation details

We implemented our method in PyTorch. We used simple data augmentations to reduce
overfitting: random cropping with a 224 x 224 patch, random flipping and rotations. All
methods were trained till validation-set convergence (which was by 40,000 iterations). We
selected the best checkpoint for evaluation based on validation set performance. Our method
was trained using AdamW [3] with a weight decay of 5 x 10~*. We utilized the poly learning
rate schedule, initialized at 5 x 10~* for CNN and 1 x 10~* for Transformer. The batch sizes
were 4 and 10 respectively, with half labeled and half unlabeled images. For our MCSC
module, each projector H, has two linear layers, where the first linear layer changes the
dimension of feature map to 256 channels; the last layer has 128 channels and shares its
parameters between the two models. In Eq.(2), temperature T = 0.1. We use multi-scale fea-
ture maps from three layers of E,, with sizes of 256 x 256, 56 x 56, and 28 x 28 respectively,
and the size 4’ of a patch was set to 19, 28 and 14 accordingly. All experiments were run on
one (for ACDC) or two (for Synapse) RTX 3090 GPUs.

S3 Full results on ACDC and Synapse

Table S1 summarizes ACDC segmentation results of our MCSC and all baselines on 7 and
3 labelled cases, and results of our MCSC, UNet-LS and CTS on 1 case. Segmentation
visualizations from our method, LS and CST trained on 7 cases on ACDC are shown in
Figure S1.

Table S2 shows the segmentation results of all methods on Synapse dataset under two
settings (4 and 2 labelled cases). Figure S2 shows segmentation visualizations for UNet with
limited supervision, CPS, CTS and our method MCSC, on 4 cases of Synapse.

Labeled | Methods | DSCt | HD| | Aorta Gallb Kid_L Kid R Liver Pancr Spleen Stom

UNet-FS 75.6 423 | 888  56.1 78.9 72.6 919 558 85.8 74.7
nnFormer [10] | 86.6 106 | 920 702 86.6 86.3 96.8 834 90.5 86.8

UNet-LS 472 | 1223 | 67.6  29.7 47.2 50.7 79.1 25.2 56.8 21.5

18 cases(100 %)

UAMT 519 693 | 753 334 55.3 40.8 82.6 275 55.9 44.7

ICT 575 793 | 742 36.6 58.3 51.7 86.7 347 66.2 51.6

4 cases(20 %) CCT 514 | 1029 | 71.8 312 52.0 50.1 83.0 325 65.5 25.2
CPS 579 626 | 75.6 414 60.1 530 882 262 69.6 489

CTS 64.0 | 564 | 799 389 66.3 635 86.1 419 753 604

MCSC (Ours) | 68.5 | 248 | 763 444 734 72.3 91.8  46.9 79.9 62.9
UNet-LS 452 | 55.6 | 664 272 460 480 826 182 39.9 33.4

UAMT 49.5 626 | 71.3  21.1 62.6 514 793 228 58.2 29.0

ICT 49.0 599 | 689 19.9 52.5 522 837 254 53.2 36.0

2 cases(10 %) CCT 46.9 582 | 66.0 26.6 53.4 41.0 829 212 48.7 35.6
CPS 48.8 656 | 709 213 58.0 45.1 80.7 235 58.0 32.7

CTS 520 | 637 | 732 127 67.2 647 829 317 40.9 424

MCSC (Ours) | 61.1 326 | 739 2064 69.9 72.7 90.0 332 794 43.0

Best is reported as bold, Second Best is underlined.

Table S2: Comparison with different models on Synapse. The performance is reported by
DSC (%) and HD (%), as well as the DSC value of each types of organs.
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Mean Myo LV RV

Labeled Methods ‘ DSCt HDJ | DSCt HDJ | DSCt HDJ ‘ DSCt HDJ
o UNet-FS 917 40 | 890 50 | 946 59 | 914 12
70 cases (100%) | g atFormer 2] | 928 80 | 9026 68 | 9630 59 | 91.97 11.3
UNetLS 759 108 | 782 86 | 855 130 | 639 107

MT [7] 809 115 | 791 7.7 | 8.1 134 | 716 133

DCT [6] 804 138 | 793 107 | 870 155 | 750 153

UAMT [9] 811 112 | 80.1 137 | 8.1 181 | 7716 147

7 cases (10%) ICT [8] 824 72 | 815 78 | 8.6 106 | 782 32
CCT[5] 840 66 | 823 54 | 886 94 | 81.0 5.1

CPS [1] 850 66 | 829 66 | 880 108 | 842 23

CTS [4] 864 86 | 844 69 | 901 112 | 848 7.8

MCSC (Ours) | 894 23 | 876 11 | 936 35 | 871 21

UNet-LS 512 312 | 548 244 | 618 243 | 370 444

MT [7] 566 345 | 586 231 | 709 263 | 403 539

DCT [6] 582 264 | 617 203 | 717 273 | 413 317

UAMT [9] 610 258 | 615 193 | 707 226 | 508 354

3 cases (5%) ICT [8] 58.1 228 | 620 204 | 673 241 | 448 238
CCT [5] 58.6 279 | 647 224 | 704 271 | 408 342

CPS [1] 603 255 | 652 183 | 720 222 | 438 358

CTS [4] 65.6 162 | 62.8 11.5 | 763 157 | 577 214

MCSC (Ours) | 73.6 105 | 700 88 | 792 149 | 71.7 7.8

UNet-LS 264 60.1 | 263 512 | 283 520 | 246 71.0

1 case CTS [4] 468 363 | 551 55 | 648 41 | 205 994
MCSC (Ours) | 58.6 312 | 642 133 | 781 122 | 335 681

Best is reported as bold, Second Best is underlined.

Table S1: Segmentation results on DSC(%) and HD(mm) of our method and baselines on
ACDC, across different numbers of labelled cases. Bold is the best result, and underlined
2nd-best, for each number of cases.
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Figure S1: Segmentation visualizations from our method, LS and CST trained on 7
labelled cases on ACDC.
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Figure S2: Segmentation visualizations from our method, LS, CPS and CST trained on 4
labelled cases on Synapse.

S4 Visualization of features with contrastive learning
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Figure S3: Visualization of embedding features from our method and standard SCL after
applying t-SNE on test data of ACDC and Synapse respectively. Each case represents one
slice from a different patient.

Figure S3 shows visualizations of embedding features applying t-SNE on a single slice of
two cases from the test data of ACDC and Synapse respectively. The models are trained with
7 cases (ACDC) and 4 cases (Synapse). Different colors represent different classes. Features
are taken from the feature map after the projector with scale of 256 x 256, and each point in
the figure is the embedding of one pixel. The standard SCL is the second row of Table 3 in
the main text (SCL+DB). For ACDC, the left case 1 shows our method better separates RV
from the other two foreground classes, and reduces the overlap between LV and Myo. For
the case 2, the foreground clusters of ours are tighter. A more clear and consistent effect can
be seen on Synapse. For the case on the left, our method makes the liver, spleen and stomach
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much better separated than standard SCL. A similar situation also occurs with the left and
right kidneys for the case 2. Overall, through cross labelling, averaging the contribution
of each class in SCL, and contrasting multi-scale feature maps, our method obtains a better
embedding representations for segmentation, where features within the same class are pulled
closer and features for different class are spread farther apart.
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