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Motivation

Ultra low-bit quantization scales down model weights and activations from 32-bit full-precision

to less than 8-bit, presenting an attractive solution for deep learning model deployment on edge

devices. Using state-of-the-art techniques for quantization-aware training (QAT) such as LSQ, it is

possible to quantize a convolutional neural network to 2 bits with minimal accuracy degradation.

Model Top-1
Top-1 Accuracy@2-bit

Accuracy@32-bit PACT (2018) LQ-NET (2018) QIL (2019) PACT-SAWB (2019) LSQ (2020)

ResNet18 70.5% 64.4% 65.2% 65.7% 67.0% 67.9%

ResNet50 76.9% 72.2% 71.5% 74.2% 74.6%

Table 1. 2-bit accuracy on ImageNet dataset with different QAT methods.

However, realizing inference on edge devices with sub-8-bit data remains challenging due to the

following reasons.

Lack of support for sub-8-bit data types on mainstream CPU architectures.

Fake-quantization during QAT retains weights and activations in full-precision.

Modifications required in training and inference paths to enable ultra low-bit deployment.

Contributions

We introduce DeepliteRT, an inference solution for the deployment of ultra low-precision sub-

8-bit quantized models on ARM-based platforms, that makes the following contributions:

High performance bit-serial convolution kernels defined as dlrt_bitserial_conv2d that
achieve SOTA performance with up to 4.34×speedup over existing ultra low-bit methods
on ARMv7 and ARMv8 CPUs.

Compiler passes that automatically convert 32-bit convolution operators, weights and

activations in fake-quantized models produced by QAT into ultra low-bit representations.

Mixed precision inference by allowing the number of bits for weights and activations to be

specified on a per-layer basis.

DeepliteRT makes ultra low-bit model deployment on edge devices highly accessible to ML

practitioners as no code changes are required in the training, quantization, or inference paths.

Bitpacking

Figure 1. 2-bit data sliced into bitplanes that are then bitpacked into uint8 registers.

Ultra low-bit data can be compactly stored in standard data types such as 8-bit unsigned integers

through simple bitwise operations. The data is first sliced into bitplanes based on the number of

bits, that are then assigned to standard data types.

Bit-serial Dot Product

Considering binary bitpacked vectors with unipolar (unsigned) encoding where each input value

is either 0 or 1, the bit-serial dot product is given by eq. (1a). A bit-wise AND operation gives

the element-wise product of the binary inputs and the popcount operation, that counts the

number of bits set to 1, performs the accumulation. The binary case can easily be extended to

larger bit-widths by slicing the inputs into binary vectors and performing a summation of the

bit-serial dot products over all possible bit-sliced combinations as shown in eq. (1b).

~w · ~a = popcount(~w & ~a) (1a)

~w · ~a =
M−1∑
m=0

N−1∑
n=0

(popcount( ~wm & ~an)) << (n + m) (1b)

Optimized bit-serial dot product with dlrt_bitserial_conv2d

We propose a novel bit-serial computation method in eq. (2) that employs a hybrid unipolar-

bipolar scheme with unipolar activations and bipolar (signed) weights.

~w · ~a =

{
−1 ×

∑N−1
n=0 (popcount(~wM−1 & ~an)) << (n + m), ifm = M − 1∑M−1

m=0
∑N−1

n=0 (popcount( ~wm & ~an)) << (n + m), otherwise
(2)

This bit-serial dot product is the building block of our highly optimized bit-serial convolution

operator dlrt_bitserial_conv2d that advances the state-of-the-art for ultra low-bit inference
on ARM devices.

Higher accuracy due to the hybrid unipolar-bipolar scheme.

Similar instruction count to the unipolar variant from eq. (1b).

Significant speedups of up to 4.34×relative to existing ultra low-bit kernels.
Zero mapping for weights ensuring comptaibility with SOTA uniform quantization

techniques such as LSQ.

SOTAUltra Low-bit Performance

(a) Speedup on second layer of ResNet18 across

different bit-widths.

(b) Speedup on ResNet18 model across different

bit-widths.

Figure 2. Speedups of dlrt_bitserial_conv2d over nn.bitserial_conv2d on the Raspberry Pi 4B.

Our bit-serial convolution operator dlrt_bitserial_conv2d achieves substantial perfor-

mance uplifts over the open-source hybrid uniploar-bipolar implementation from TVM’s

nn.bitserial_conv2d operator.

Compiler Passes

Figure 3. DeepliteRT converts fake-quantized convolution layers from models in different formats to optimized ultra

low-bit convolution operators through a series of compiler passes. The passes replace nn.conv2d with
dlrt_bitserial_conv2d, bitpack the weights in ultra low-bit, and cast and transform the layouts of data as

required. The resulting compiled model can be deployed on ARMv7 and ARMv8 CPUs via TVM runtime.

End-to-end Performance

Model
Raspberry Pi 4B - 32-bit ARMv7 Raspberry Pi 4B - 64-bit ARMv8

FP32 INT8 2A2W 2A2W (Ours) FP32 INT8 2A2W 2A2W (Ours)

ResNet18 149.29 145.44 130.92 70.32 110.94 91.13 123.28 67.13

ResNet50 433.19 326.49 311.8 196.79 315.03 203.56 295.96 197.91

ResNet101 - 558.47 487.96 325.37 545.01 378.27 471.71 319.09

VGG19 - 1399 1003 654.69 - 922.28 962.65 636.79

InceptionV3 312.82 245.16 357.77 165.05 218.18 151.55 340.82 164.62

DenseNet121 387.98 589.03 296.27 252.65 302.50 261.94 269.91 227.05

VGG16-SSD300 1671 2310 1780 1190 1547 1462 1631 1060

YOLOv5s 219.72 197.27 135.64 100.32 169.93 113.5 130.03 97.49

Average speedup 1.89× 1.91× 1.58× - 1.54× 1.20× 1.56× -

Minimum speedup 1.40× 1.49× 1.17× - 1.32× 0.92× 1.19× -

Maximum speedup 2.20× 2.33× 2.17× - 1.71× 1.45× 2.07× -

Table 2. End-to-end latencies (ms) and speedups of our 2-bit DeepliteRT inference engine over 32-bit TVM (FP32),

8-bit ONNX Runtime (INT8) and 2-bit TVM bit-serial (2A2W) baselines.

DeepliteRT offers leading performance for both ARMv7 and ARMv8 targets. On average,

DeepliteRT realizes speedups of 1.89×, 1.91× and 1.58× in 32-bit mode and 1.54×, 1.20×
and 1.56× in 64-bit mode over TVM FP32, ONNX Runtime INT8 and TVM 2A2W, respectively.
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