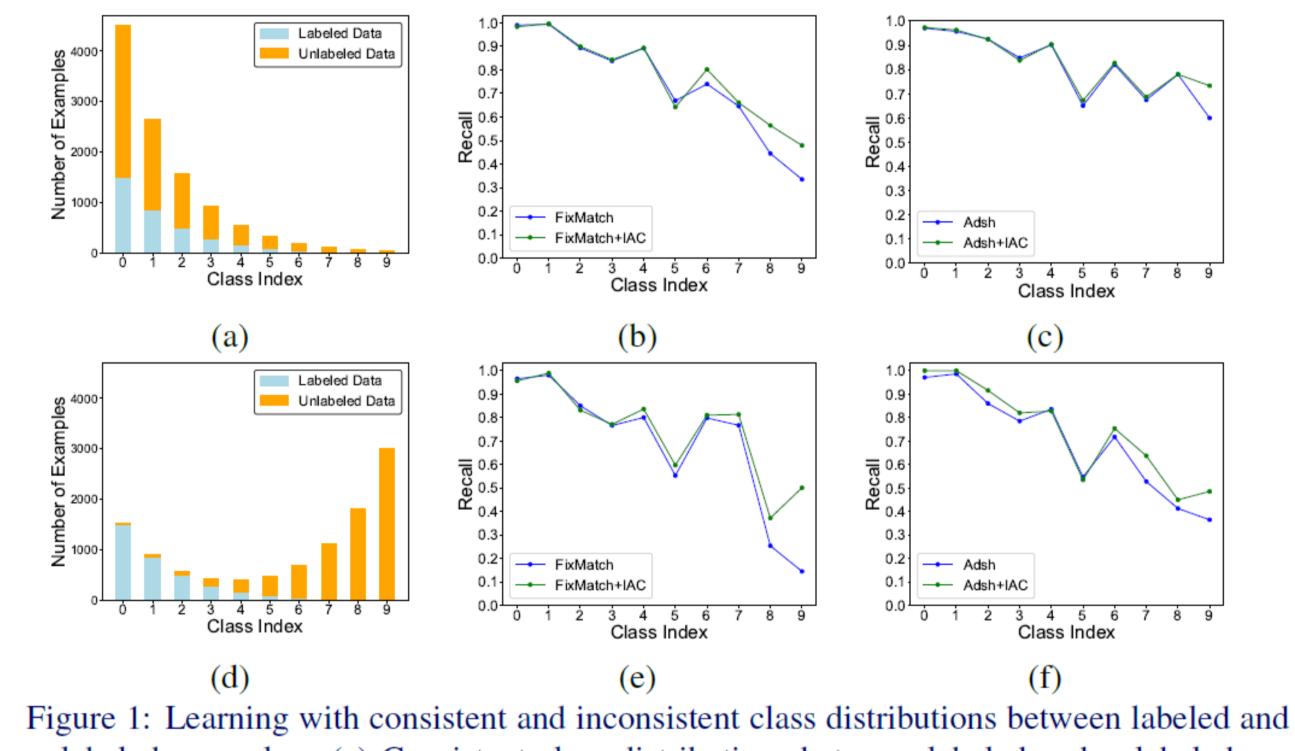


Class-Imbalanced Semi-Supervised Learning with Inverse Auxiliary Classifier

Tiansong Jiang, Sheng Wan*, Chen Gong* School of Computer Science and Engineering, Nanjing University of Science and Technology.


Introduction & Motivation

We introduce IAC (Inverse Auxiliary Classifier), which is

Experi	ment	S			
		CIFAR-10			
Algorithm			$N_1 = 1500, M_1 = 3000$		
Aigonum	$\gamma_l = 150$	$\gamma_l = 100$	$\gamma_l = 1$	50	$\gamma_l = 100$

a novel and effective plug-in module for existing CISSL algorithms to emphasize the importance of minority classes during the feature learning process.

The proposed IDA (Inverse Distribution Alignment) loss is utilized to enrich the limited supervision, facilitating IAC in effectively learning from the minority-class data.

	$\gamma_u = 150$	$\gamma_u = 150$	$\gamma_u = 100$	$\gamma_u = 1$	$\gamma_u = \frac{1}{100}$	$\gamma_u = 150$	$\gamma_u = 100$	$\gamma_u = \frac{1}{100}$
Supervised	43.66/36.60	46.47/41.46	46.47/41.46	46.47/41.46	46.47/41.46	60.37/57.09	63.39/61.14	63.39/61.14
FixMatch	64.10/59.14	71.47/70.04	74.17/73.43	77.66/73.30	60.05/54.78	73.20/72.30	77.66/76.21	71.57/69.78
w/IAC	67.81/64.92	73.26/72.42	74.72/74.02	78.54/78.27	65.26/61.68	74.44/73.80	78.10/77.75	75.27/74.51
CReST	72.28/70.79	73.66/72.48	78.72/78.45	92.86/92.20	71.80/68.35	74.00/73.21	79.22/78.48	86.80/86.61
w/IAC	73.03/71.62	75.71/72.97	79.02/78.12	92.89/92.26	79.47/76.96	75.22/73.38	79.77/79.65	87.61/87.44
Adsh	67.47/64.26	73.03/72.23	76.34/75.95	82.22/82.57	66.91/66.39	74.00/73.09	78.15/77.70	70.09/69.33
w/IAC	70.39/68.71	74.75/74.00	77.23/76.88	85.51/85.76	71.17/71.15	74.35/73.60	79.40/79.14	74.09/74.11
DARP	68.99/ 67.05	74.10/73.22	75.34/74.81	71.69/68.51	61.44/56.19	74.34 /72.41	78.27/77.90	69.31/67.34
w/IAC	69.01 /66.50	74.59/73.85	75.85/75.32	84.09/83.96	64.87/61.05	74.01/ 73.18	78.92/78.62	75.31/74.81
DASO	64.84/62.03	67.71/66.34	69.87/69.09	71.57/70.75	69.77/69.44	72.68/ 72.12	76.90/76.63	78.03/78.14
w/IAC	67.13/65.67	68.02/66.65	71.19/70.64	74.55/74.37	78.80/78.96	72.70 /71.99	77.09/76.86	81.65/81.78
ABC	76.41/75.78	80.63/80.49	81.88/81.79	87.07/87.09	79.43/79.22	80.73/80.67	84.25/84.23	83.76/83.54
w/IAC	78.54/78.24	80.69/80.53	81.93/81.82	88.32/87.49	81.94/81.57	82.05/82.03	84.49/84.48	84.65/84.59
CoSSL	76.95/76.98	80.68/80.79	82.55/82.52	85.98/85.95	72.27/72.04	83.13/83.30	84.98/85.03	74.12/73.22
w/IAC	78.79/78.94	80.81/80.99	82.85/82.91	86.89/86.88	76.23/76.07	83.11/83.20	85.37/85.41	76.64/75.77

Table 1: Comparison results (ACC/F1) on CIFAR-10.

	SVHN		CIFAR-100				STL-10	
Algorithm -	$N_1 = 500, M_1 = 4000$		$N_1 = 150, M_1 = 300$				$N_1 = 150, M = 100k$	
	$\gamma_l = 100$		$\gamma_l = 10$		$\gamma_l = 15$		$\gamma_l = 10$	$\gamma_l = 20$
	$\gamma_u = 100$	$\gamma_u = rac{1}{100}$	$\gamma_u = 10$	$\gamma_u = rac{1}{10}$	$\gamma_u = 15$	$\gamma_u = \frac{1}{15}$	$\gamma_u:N/A$	$\gamma_u:N/A$
Supervised	82.29/79.73	82.29/79.73	48.23/46.61	48.23/46.61	45.92/43.80	45.92/43.80	46.42/44.62	40.04/35.76
FixMatch	91.93/90.73	89.72/88.20	57.96/56.47	56.91/56.06	54.50/52.34	53.78/52.38	65.61/63.97	54.56/48.89
w/IAC	91.95/90.67	92.66/92.34	58.58/57.22	59.33/58.66	55.74/53.80	56.40/55.44	67.01/64.94	55.85/50.95
CReST	93.12/ 91.56	92.13/ 91.72	57.09/55.55	59.17/58.33	54.54/52.08	56.38/55.38	67.01/61.94	59.23/54.46
w/IAC	93.27 /90.78	92.47 /90.98	58.57/57.23	61.06/60.26	54.90/52.14	58.57/57.55	67.73/62.15	60.26/54.57
Adsh	92.32/91.29	87.60/87.08	58.20/57.21	55.22/54.74	54.14/52.57	51.80/50.92	69.68/70.03	65.50/64.68
w/IAC	92.34/91.36	91.48/91.10	58.33/57.33	57.25/56.95	54.53/52.83	54.39/53.83	70.48/70.35	66.33/64.94
DARP	91.81,90.60	91.95/90.99	57.88/56.69	57.82/56.91	54.49/52.61	54.69/53.43	63.94/61.85	55.26/51.81
w/IAC	91.84/90.74	93.27/92.94	58.55/57.43	59.13/58.45	55.16/53.13	56.94/55.93	66.83/65.63	57.63/54.28
DASO	88.59/87.19	89.54/88.72	58.67/56.51	59.31/58.22	55.11/52.37	56.18/54.72	69.38/68.54	58.08/53.66
w/IAC	89.01/87.76	93.00/92.67	58.77/57.50	59.70/59.06	55.56/53.48	56.89/55.87	70.55/69.62	62.54/60.43
ABC	93.75/ 93.12	92.74/ 92.39	59.83/58.64	59.88/59.02	56.87/55.47	57.25/56.36	70.83/69.92	65.69/63.87
w/IAC	93.76 /93.01	92.76 /92.27	60.15/59.14	60.51/59.81	56.73/55.35	57.73/56.72	71.99/71.16	67.64/66.81
CoSSL	92.68/91.69	90.27/88.03	58.58/57.58	58.11/57.45	56.21/55.31	55.56/54.53	70.75/70.15	64.85/64.09
w/IAC	92.97/92.29	92.46/91.57	59.45/58.53	59.67/59.10	56.43/55.62	56.33/55.51	71.14/70.54	65.18/64.34

unlabeled examples. (a) Consistent class distributions between labeled and unlabeled examples. (b)-(c) Recall of the generated pseudo-labels and predicted labels under consistent class distributions, respectively. (d) Inconsistent class distributions between labeled and unlabeled examples. (e)-(f) Recall of the generated pseudo-labels and predicted labels under inconsistent class distributions, respectively.

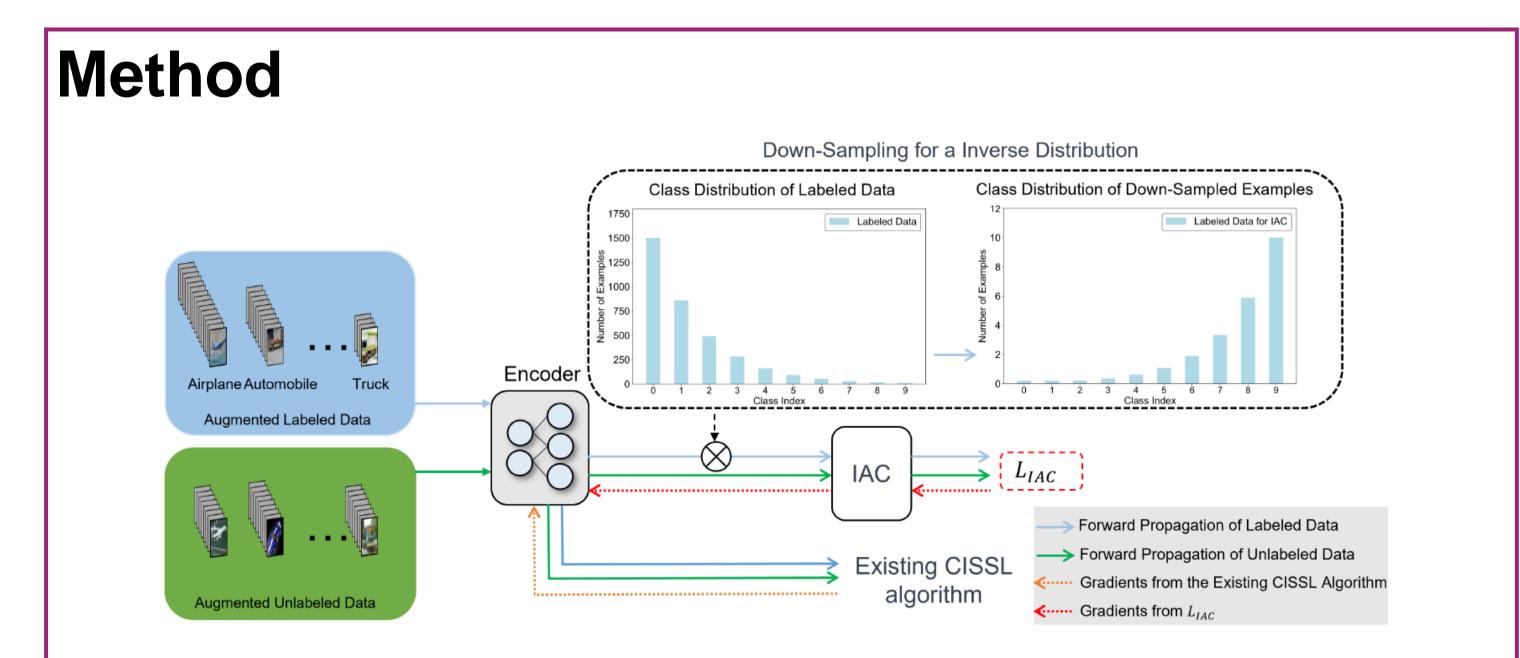
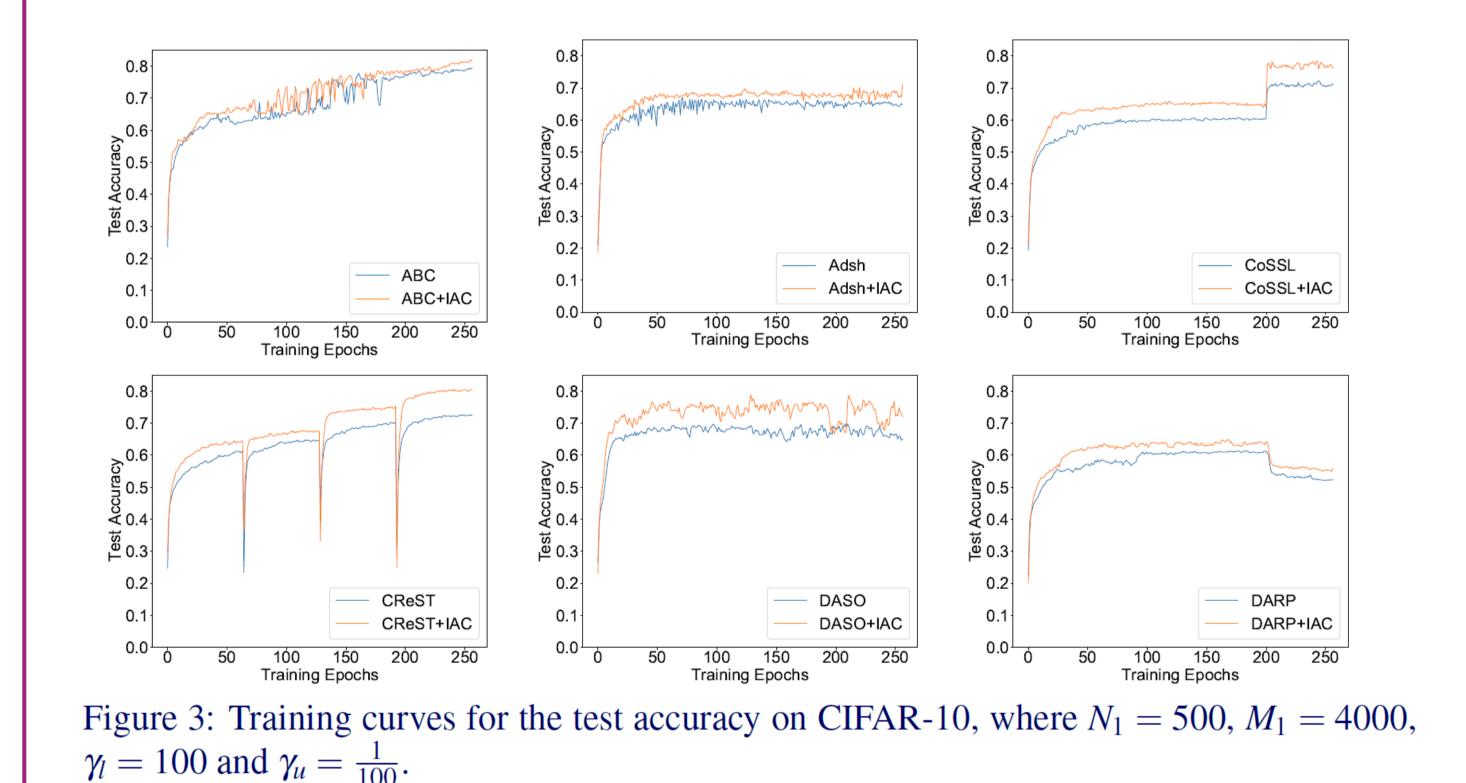
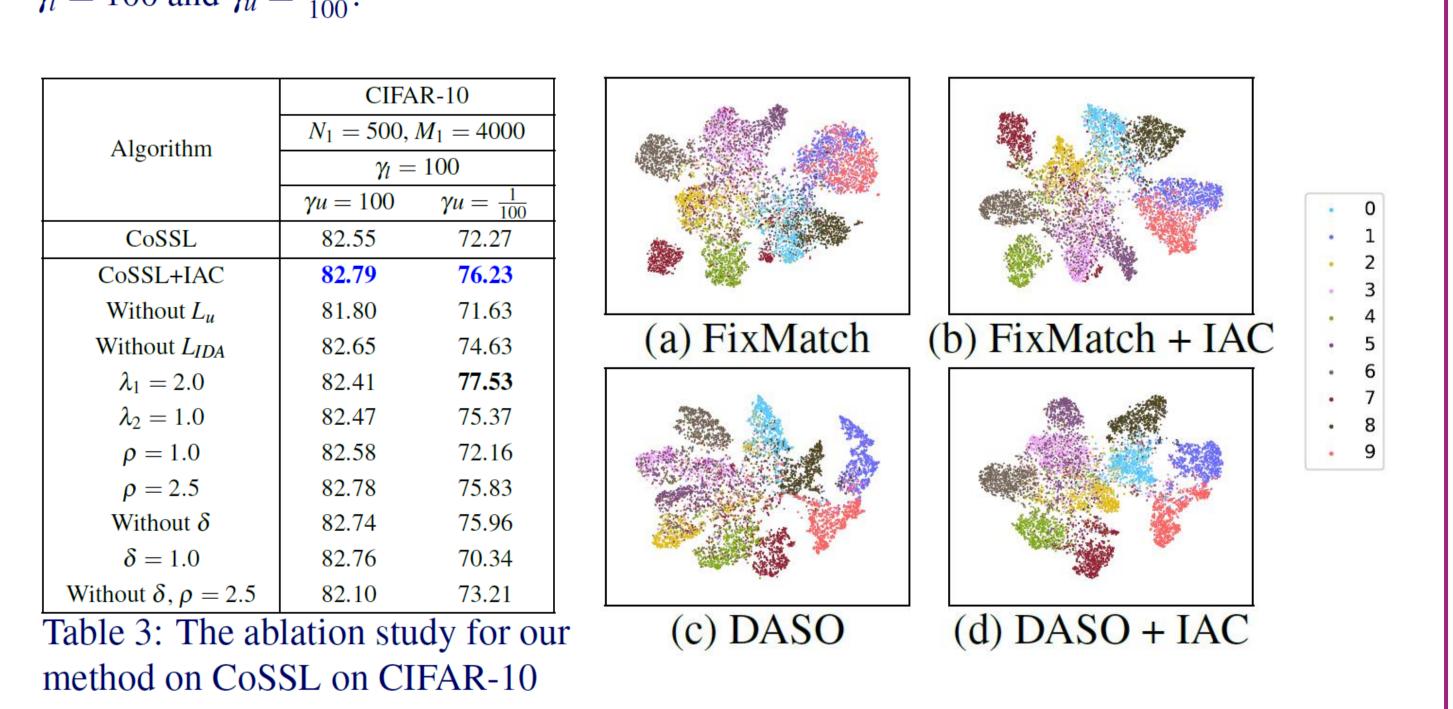




Figure 2: The overall framework of the CISSL method that incorporates our proposed IAC. $L_{s} = \frac{1}{B} \sum_{b=1}^{B} M(\mathbf{x}_{b}) H(p(y_{b}), q_{b})$

Table 2: Comparison results (ACC/F1) on SVHN, CIFAR-100 and STL-10.

$$M(\mathbf{x}_{b}) = Ber(max(\frac{\sigma}{N_{y_{b}}}, (\frac{\gamma R}{N_{y_{b}}})^{p}))$$

$$L_{u} = \frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(max(q_{b}) \ge \tau) H(p_{i}(y \mid A(\mathbf{u}_{b})), \hat{q}_{b})$$

$$L_{IDA} = H(\tilde{p}(y), \frac{\sum_{b=1}^{\mu B} q_{b}}{B})$$

$$L_{IAC} = L_{s} + \lambda_{1}L_{u} + \lambda_{2}L_{IDA}$$

$$L = L_{CISSL} + L_{IAC}$$