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1 Additional Training Curves

We visualize the training curves for the test accuracy throughout the training phase for the six
CISSL algorithms [1, 2, 3, 4, 5, 6] with and without IAC respectively, on CIFAR-10 dataset
with N1 = 500, M1 = 4000, γl = 100 and γu = 100 in Figure 1. This represents a typical
scenario where the class distributions of labeled and unlabeled examples are consistent. As
shown in Figure 1, although not overly conspicuous, the proposed IAC can enhance the
performance of CISSL algorithms when the distributions of labeled and unlabeled data are
consistent. This suggests that IAC is an effective plug-in module for CISSL.
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Figure 1: Training curves for the test accuracy on CIFAR-10, N1 = 500, M1 = 4000, γl = 100
and γu = 100.
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Algorithm CIFAR-10 CIFAR-100
FixMatch 9.88iter/sec 9.82iter/sec

w/IAC 9.48iter/sec 9.40iter/sec
CReST 9.88iter/sec 9.82iter/sec
w/IAC 9.48iter/sec 9.40iter/sec
Adsh 9.80iter/sec 9.53iter/sec

w/IAC 9.52iter/sec 9.34iter/sec
DASO 8.23iter/sec 7.82iter/sec
w/IAC 7.92iter/sec 7.34iter/sec
ABC 9.49iter/sec 9.33iter/sec

w/IAC 9.12iter/sec 8.89iter/sec
CoSSL 4.87iter/sec 3.51iter/sec
w/IAC 4.52iter/sec 3.26iter/sec

Table 1: Training cost on CIFAR-10 and CIFAR-100.

2 Running Cost Analysis
To evaluate the efficiency of IAC, we display the training cost in Table 1, where we measure
floating point operations per second (FLOPS) using NVIDIA GeForce RTX 2080 Ti. As the
proposed IAC appears to be a variant of ABC in structure, the time consumption when using
IAC is relatively low. Table 1 shows that the training cost of our IAC, in terms of time, is
similar to that of ABC. This cost is negligible compared to existing CISSL algorithms.
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