## KNV 2023

Masked Attention ConvNeXt Unet with **Multi-Synthesis Dynamic Weighting for Anomaly Detection and Localization** 



Shih-Chih Lin, Ho-Weng Lee, Yu-Hsuan Hsieh, Cheng-Yu Ho **Advisor: Dr. Shang-Hong Lai** National Tsing Hua University, Hsinchu, Taiwan

## ABSTRACT

Our study introduces a novel multi-synthesis weighting strategy, denoted as MSdW, aimed at harnessing the advantage of diverse data synthesis strategies. We also construct a model architecture comprising

## REFERENCE

1. Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In **Proceedings of the IEEE/CVF International** Conference on Computer Vision, pages 8330-8339, 2021. 2. Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and Saining Xie. **Convnext v2: Co-designing and scaling convnets with** masked autoencoders. arXiv preprint arXiv:2301.00808, 2023. 3. Nicolae-Cat čalin Ristea, Neelu Madan, Radu Tudor Ionescu, Kamal Nasrollahi, Fahad Shahbaz <sup>°</sup>Khan, Thomas B Moeslund, and Mubarak Shah. Selfsupervised predictive convolutional attentive block for anomaly detection. In Proceedings of the **IEEE/CVF** Conference on Computer Vision and Pattern Recognition, pages 13576–13586, 2022 4. Rick Groenendijk, Sezer Karaoglu, Theo Gevers, and Thomas Mensink. Multi-loss weighting with coefficient of variations. In Proceedings of the **IEEE/CVF** winter conference on applications of computer vision, pages 1469–1478, 2021.

reconstructive and discriminative subnetworks built upon the U-Net architecture with a ConvNextV2 base. We conduct a comprehensive evaluation of our proposed model across various datasets for the tasks of anomaly detection and segmentation. Notably, the datasets used for evaluation include MVTecAD, BTAD, and KSDD2. Our experimental results demonstrate that our model surpasses existing state-of-the-art methods, exhibiting significant improvements in Pixel AP and PRO indices.

## **Proposed Method**

Our proposed Model Architecture: Reconstructor and Discriminator subnetwork



Multi-Synthesis Dynamic Weighting (MSdW)

 $Multi\_Loss(t)_{S_i} = \alpha_1(t) \cdot Loss_{L1smooth}(X_{S_i}, X_{R_i}) +$  $\alpha_2(t) \cdot Loss_{1-SSIM}(X_{Si}, X_{Ri}) +$  $\alpha_3(t) \cdot Loss_{Focal}(PredictedMask_{S_i}, GT_{S_i}) +$  $\alpha_4(t) \cdot Loss_{Dice}(PredictedMask_{S_i}, GT_{S_i})$ where  $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1$ .

Synthesis\_Loss(t)<sub>Total</sub> =  $\beta_1(t) \cdot Multi\_Loss_1$  +

Reconstruction Unet(ConvNeXtUnetV2)



 $\beta_2(t) \cdot Mutli\_Loss_{s_2} +$  $\beta_3(t) \cdot Mutli\_Loss_{s_3} +$ 

 $\beta_4(t) \cdot Mutli\_Loss_{s_4}$ 

where  $\beta_1 + \beta_2 + \beta_3 + \beta_4 = 1$ .

Self-Supervised Predictive Convolutional Block with Multi-Attention(SSPCBMA)





**Experiment Result** Recon. Anomaly Pred. Ground Input Input image mask Truth result map image mask Ours DRÆM Ours DRÆM Ours DRÆM



| Image-level AUROC/ |                   |                     |                     |                     |                     |                     |                     |                     | Per Region Overlap (PRO) score/          |          |                    |                    |                    |          |                 |                    |                    |
|--------------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------------------------------|----------|--------------------|--------------------|--------------------|----------|-----------------|--------------------|--------------------|
|                    | Pixel-level AUROC |                     |                     |                     |                     |                     |                     |                     | Pixel-level Average Precision (Pixel-AP) |          |                    |                    |                    |          |                 |                    |                    |
| Category           | CutPaste          | DRÆM                | SSPCAB              | RD                  | NSA                 | DSR                 | Patchcore           | Ours                | Category                                 | CutPaste | DRÆM               | SSPCAB             | RD                 | NSA      | DSR             | Patchcore          | Ours               |
| Carpet             | 93.9/98.3         | 96.9/97.5           | 93.1/92.6           | 98.7/98.9           | 95.6/95.5           | 100.0 / 95.5        | 99.1 / 99.0         | 99.6 / <b>99.4</b>  | Carpet                                   | 50.4 / - | 92.9 / 65.1        | 86.4 / 48.6        | 95.4 / 56.5        | 85.0/-   | - / 78.2        | 95.5 / 62.2        | 99.8 / 80.6        |
| Grid               | 100.0/97.5        | 99.9/99.7           | 99.7/99.5           | 100.0 / 98.3        | 99.9 / 99.2         | <b>100.0</b> / 99.6 | 97.3 / 98.7         | 100.0 / 99.8        | Grid                                     | 91.5/-   | 98.3 / 62.8        | 98.0/57.9          | 94.2 / 15.8        | 96.8 / - | - / 68.0        | 94.0 / 24.5        | 99.1 / 77.0        |
| Leather            | 100.0/99.5        | <b>100.0</b> / 99.0 | 98.7/96.3           | <b>100.0</b> / 99.4 | 99.9 / 99.5         | 100.0 / 99.6        | 100.0 / 99.3        | 100.0 / 99.6        | Leather                                  | 83.7 / - | 97.4 / 72.9        | 94.0 / 60.7        | 98.2 / 47.6        | 98.7 / - | -/62.5          | 96.9 / 45.3        | 99.2 / 68.3        |
| Tile               | 94.6/90.5         | 100.0 / 99.2        | <b>100.0</b> / 99.4 | 99.7/95.7           | 100.0 / 99.3        | 100.0 / 98.2        | 99.3 / 95.8         | 100.0 / 99.5        | Tile                                     | 54.4 / - | 98.2 / <b>95.2</b> | 98.1 / 96.1        | 85.6 / 54.1        | 95.3 / - | -/93.9          | 91.3 / 56.2        | <b>98.3</b> / 94.3 |
| Wood               | 99.1/95.5         | 99.5/95.5           | 98.4 / <b>96.5</b>  | 99.5/95.8           | 97.5 / 90.7         | 96.3 / 92.5         | <b>99.6</b> / 95.1  | 96.8 / 96.2         | Wood                                     | 64.0 / - | 90.3 / 74.6        | 92.8 / <b>78.9</b> | 91.4 / 48.3        | 85.3 / - | - / 68.4        | 87.1 / 49.3        | <b>96.7</b> / 74.9 |
| Average            | 97.5/96.3         | 99.3/98.2           | 98.0/96.9           | <b>99.6</b> / 97.6  | 98.6 / 96.8         | 99.3 / 97.1         | 99.1 / 97.6         | 99.3 / <b>98.9</b>  | Average                                  | 68.8 / - | 95.4 / 74.1        | 93.9 / 68.4        | 93.0 / 44.5        | 92.2 / - | - / 74.2        | 93.0/47.5          | 98.6 / 79.0        |
| Bottle             | 98.2/97.6         | 98.0/99.1           | 95.6 / <b>99.2</b>  | <b>100.0</b> / 98.8 | 97.7 / 98.3         | <b>100.0</b> / 98.9 | <b>100.0</b> / 98.6 | <b>100.0</b> / 98.4 | Bottle                                   | 91.2 / - | <b>96.8</b> / 88.9 | 96.3 / <b>89.4</b> | 96.3 / 78.0        | 92.9 / - | -/91.5          | 95.4 / 76.8        | <b>96.8</b> / 86.5 |
| Cable              | 81.2/90.0         | 90.9/95.2           | 92.7/95.1           | 96.1/97.2           | 94.5 / 96.0         | 93.8 / 96.7         | 99.9 / 98.5         | 95.7/94.4           | Cable                                    | 59.8 / - | 81.0 / 56.4        | 80.4 / 52.0        | 94.1 / 52.6        | 89.9/-   | - / <b>70.4</b> | <b>96.8</b> / 67.0 | 95.2 / 66.8        |
| Capsule            | 98.2/97.4         | 91.3/88.1           | 96.9/90.2           | 96.1/98.7           | 95.2/97.6           | 98.1 / 95.4         | 98.0 / 99.0         | 99.0 / 99.1         | Capsule                                  | 83.5 / - | 82.7 / 39.6        | 92.5 / 46.4        | 95.5/47.2          | 91.4 / - | - / 53.3        | 93.4 / 46.0        | 95.9 / 57.6        |
| Hazelnut           | 98.3/97.3         | 100.0 / 99.7        | 100.0 / 99.7        | <b>100.0</b> / 99.0 | 94.7 / 97.6         | 95.6 / 99.2         | <b>100.0</b> / 98.7 | 98.9 / 99.5         | Hazelnut                                 | 81.3 / - | <b>98.5</b> / 92.6 | 98.2 / <b>93.4</b> | 96.9 / 60.7        | 93.6/-   | -/87.3          | 90.9 / 53.2        | 96.9 / 87.4        |
| Metal Nut          | 99.9/93.1         | 100.0 / 99.6        | <b>100.0</b> / 99.4 | <b>100.0</b> / 97.3 | 98.7 / 98.4         | 98.5 / 93.7         | 99.9 / 98.3         | <b>100.0</b> / 98.9 | Metal Nut                                | 54.4 / - | 97.0 / <b>97.0</b> | <b>97.7</b> / 94.7 | 94.9 / 78.6        | 94.6/-   | -/67.5          | 92.6 / 86.6        | 96.9 / 89.3        |
| Pill               | 94.9/95.7         | 97.1/97.3           | 97.4/97.2           | 98.7/98.1           | 99.2 / 98.5         | 97.5 / 93.4         | 97.5 / 97.6         | 97.2/97.3           | Pill                                     | 83.1 / - | 88.4 / 47.6        | 89.6 / 48.3        | 96.7 / 76.5        | 96.0/-   | -/65.7          | 94.5 / 75.7        | 93.6 / 68.8        |
| Screw              | 88.7/96.7         | <b>98.7</b> / 99.3  | 97.8/99.0           | 97.8 / <b>99.7</b>  | 90.2 / 96.5         | 96.2 / 98.5         | 98.2 / 99.5         | 97.5/99.3           | Screw                                    | 72.6/-   | 95.0 / <b>66.5</b> | 95.2/61.7          | 98.5 / 52.1        | 90.1 / - | - / 52.5        | 97.5 / 34.7        | <b>99.4</b> / 54.4 |
| Toothbrush         | 99.4 / 98.1       | <b>100.0</b> / 97.3 | 97.9/97.3           | <b>100.0</b> / 99.1 | <b>100.0</b> / 94.9 | 99.7 / <b>99.5</b>  | <b>100.0</b> / 98.6 | 99.2/99.3           | Toothbrush                               | 88.1 / - | 85.6/45.5          | 85.5/39.3          | 92.3 / 51.1        | 90.7 / - | - / 74.2        | <b>94.0</b> / 37.9 | 92.6 / 62.5        |
| Transistor         | 96.1/93.0         | 91.7/85.2           | 88.0/84.8           | 95.5/92.3           | 95.1 / 88.0         | 97.8 / 83.2         | 99.9 / 96.5         | 96.3 / 92.8         | Transistor                               | 68.5 / - | 70.4 / 39.0        | 62.5 / 38.1        | 83.3 / 54.1        | 75.3/-   | -/41.1          | 92.3 / 66.9        | 72.4 / 49.2        |
| Zipper             | 99.9/99.3         | <b>100.0</b> / 99.1 | <b>100.0</b> / 98.4 | 97.9/98.3           | 99.8 / 94.2         | <b>100.0</b> / 98.9 | 99.5 / 98.9         | 100.0 / 99.4        | Zipper                                   | 84.9 / - | 96.8 / 77.6        | 95.2 / 76.4        | 95.3 / 57.5        | 89.2 / - | -/78.5          | 96.1 / 62.3        | 98.9 / 83.0        |
| Average            | 95.5 / 95.8       | 96.8 / 96.0         | 96.6/96.0           | 98.2/97.9           | 96.5 / 96.0         | 97.7 / 95.7         | 99.3 / 98.4         | 98.4 / 97.8         | Average                                  | 76.7 / - | 89.2 / 65.1        | 89.3 / 64.0        | <b>94.4</b> / 60.8 | 90.4 / - | - / 68.2        | <b>94.4</b> / 60.7 | 93.4 / <b>70.6</b> |
| TotalAverage       | 96.1 / 96.0       | 97.6/96.7           | 97.1/96.3           | 98.7/97.8           | 97.2 / 96.3         | 98.2 / 96.2         | <b>99.2</b> / 98.1  | 98.7 / <b>98.2</b>  | TotalAverage                             | 74.1 / - | 91.3 / 68.1        | 90.8 / 65.5        | 93.9 / 55.4        | 91.0/-   | - / 70.2        | 93.9 / 56.3        | 95.4 / 73.4        |
|                    |                   |                     |                     |                     |                     |                     |                     |                     |                                          |          |                    |                    |                    |          |                 |                    |                    |