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Abstract

Despite the success of deep learning based object detectors, evaluating intermediate
representations using explicit objectives is less common, and the structure of the latent
space is usually ignored, thereby compromising the expressive power of the detectors.
In this paper, we propose a pixel-level contrastive training for object detection in a fully
supervised setting. The core hypothesis is to enforce priors on the latent space with
desirable properties along with the supervised objective, that favor better generalization.
The main intuition is to push spatially close pixel representations to be more similar than
further away ones. This captures spatial smoothness for better class prediction, and spatial
discrimination around edge areas, to provide more accurate bounding boxes. Our training
scheme can be integrated into existing Detection Transformer like frameworks without
any inference overhead. Training the recently introduced Detection Transformer (i.e.,
DETR, Deformable-DETR, DN-DETR) with our setting improves performance on COCO
across all metrics, but also on the cars driving detection dataset BDD100K, which is more
challenging than COCO (i.e, various weather conditions, higher number of objects per
scene, etc). We hope this work will influence reconsideration of the common supervised
object detection training paradigm.

1 Introduction and related works
Object detection is a fundamental task in computer vision, the goal of which is to identify
and locate objects of interest within an image. Over the last decade, significant progress
has been achieved, driven by the availability of large scale datasets (e.g., COCO [19]), and
the emergence and rapid progress of deep learning techniques. Some common detectors
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include: FasterRCNN [29], RetinaNet [21], YOLO [28], etc. Despite remarkable advances
in the field of object detection, these algorithms augment the architecture with hand-crafted
components specific for the detection task, such as proposal generation, anchor design, and
non-maximum suppression (NMS) post-processing. In contrast, DETR [4] shifted the object
detection paradigm, casting the problem as a set-based prediction one, eliminating the hand-
designed components, and maintaining comparable performance against the well-established
FasterRCNN [29]. DETR [4] combines several techniques such as bipartite matching loss,
transformer encoder-decoder with parallel decoding to design DEtection Transformer (DETR).
The approach formulates the object detection task as an image-to-set problem. The model
outputs a fixed-length unordered set of classes and bounding boxes of all possible objects
present in the image. The bipartite matching forces unique one-to-one predictions. Intuitively,
the decoder queries can be interpreted as humans saccading at various spatial locations of an
image; each human hence observes others before making its prediction. This potentially allows
for reasoning to emerge as the transformer decoder can associate objects that it encounters,
compare their correlations, and make analogies over the recurring patterns, as the cross
attention acts as a relative filtering testing inter-channels of the same latent representation.
However, DETR is difficult to optimize, and suffers from slow convergence, i.e., more than
300 epochs are needed to obtain comparable performance to FasterRCNN [29].

Several hypotheses have been proposed to account for this. First, the attention weights
are uniformly assigned to all pixels in the feature maps at initialization, hence attending to
meaningless locations that do not contribute to the feature propagation mechanism. Second,
the discrete bipartite matching is unstable under stochastic optimization, as the same query
is matched with different objects across epochs. Last, the decoder cross attention is under
optimized in the early training, resulting in noisy contextual information for the queries.

Inspired by the deformable convolution [6], [41] adds a translation term into the formula
of the transformer attention, allowing a sparse spatial sampling by attending to a smaller set
of locations (reference points). Consequently, this gating mechanism approximates the full
self-attention via the locality inductive bias excluding potential long-term dependencies from
the calculation. [30] leverages a backbone with FPN [20] to produce multi-stage features,
then a binary classifier is trained using the FCOS ground-truth assignment [32] rule to select
a sub-set of the features to be fed to the transformer encoder. Hence a decoder-free model
discarding the cross-attention modules potentially behind the slow convergence.

UP-DETR[7] tackle the issue of random queries initialization, the authors designed an
unsupervised pretext task named random query patch detection as a pre-training step. For a
given image, a random set of patches are cropped, and the transformer is trained to predict
bounding boxes of these query patches. Similarly, Efficient-DETR [38] proposed a dense
prediction to select the top-k proposals, their corresponding vectors representation are fed as
object queries, and their 4-d proposals as used as reference points in the deformable attention.
Anchor-DETR [35] induced the anchor points corresponding to a spatial location via the
receptive field as learned object queries, to goal being to alleviate the ambiguous optimization
of ‘one region, multiple objects’. DAB-DETR [22] extended the work of [35] by explicitly
learning anchor boxes as queries, where the 4-d points are the label’s boxes, pushing the
queries to attend to locations where there is an object, while also being scale adaptive as
height and width result in non-isotropic priors.

On solving the bipartite matching instability, DN-DETR [22] sets an auxiliary denoising
task, where the goal is to reconstruct noisy queries. This loss is not part of the bipartite
matching, making the optimization more stable as it is easier to solve. Intuitively, if the
transformer decoder is able to denoise a bounding box, it has to adjust the attention weights
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to be more precise in localization, which is in turn part of the Hungarian loss. DINO [40]
augmented DN-DETR by leveraging a contrastive denoising training. For a given ground
truth box, two noise ratios are added, the smaller is marked as positive, the remaining one
as negative. The contrastive denoising forces the model not to produce duplicate bounding
boxes.

These approaches project images to a non-linear latent space as feature maps, then decode
them to a learned set of logits depending on the architecture being used (i.e. proposals for
FasterRCNN, and queries for DETR-like approaches). However, these methods ignore the
latent space topology, and assume that the loss function supervises the feature maps implicitly.
Although achieving good detection metrics on the test set, this may not guarantee an adequate
latent space topology in deep learning. However, what constitutes an ideal detection latent
space is a core question that has not been adequately addressed to date. Preferably, it should
favor: i) Spatial smoothness of pixels within the same bounding box of spatial-locations
sharing the same semantic class. ii) Effectively discriminate sudden transitions (object
boundaries) by identifying close pixels in the input space with different class semantics.

Hence we argue that, notwithstanding the remarkable results of existing algorithms on
common benchmarks, learning a better regularized pixel representation space with these
desired properties can potentially favor effective generalization. The recent success of
contrastive similarity learning motivates this work to induce priors for a better latent space
topology. Contrastive learning [17] refers to learning by maximizing the mutual information
(MI) between the anchor and the set of positives, while minimizing the MI with negatives pairs
(i.e., pushing away the l2 normalized features of negatives by a distance on the hypersphere).
This is achieved based on variations of Noise Contrastive Estimation [9, 10]. Refer to [10, 31]
for further details on the derivation of the NCE loss. Clearly, however, these methods enforce
alignment and uniformity of the latent space [33], thus, may be sub-optimal for tasks requiring
granular dense pixel predictions such as detection. Recently, [37] considered each pixel as
a separate class, where nearby pixels are positives, and further ones from a pre-defined
threshold are negatives.Then, the noise contrastive estimation (NCE) loss [9, 26] is calculated
channel-wise using the positive/negative mask encouraging spatial sensitivity.

Authors of [34] proposed a fully-supervised pixel-wise contrastive algorithm for semantic
segmentation. The mask is generated from the segmentation maps: for a pixel i belonging
to a class c̄, the set of positives share the same class c̄, whereas the negatives are from
different classes C/c̄. The negative pairs are sampled from a memory bank, hence, exploring
the rich semantics across pixels located in different images. The contrastive loss brings
improvements over existing segmentation models (e.g., DeepLabV3, HRNet, and OCR).
In this work, we leverage a simple yet effective pixel-level constrastive learning algorithm
seeking better granular representations in a fully supervised way. The aim is to avoid
overlapped redundant representation exploration in the image space, and over adjacent layers.
As shown in Figure 1, the algorithm attempts to encourage consistency over the spatially close
pixels across the two views processed by the regular supervised branch and the momentum
branch, respectively. Additionally, to push further exploration of latent space for distinctive
representation learning, we adopt multiple layers of pixel-level consistency regularization.
Hence, this setting achieves higher gain outlining the effectiveness of the proposed objective
function. Moreover, integrating this module does not bring additional overhead at inference
time, nor any modification to the base model. Our contributions are as follows:

• We propose a plug-and-play (multiple-layer) pixel-level contrastive learning module to
improve the performance of DETR and its variants. It leads to better representations by
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Figure 1: Complete pipeline for training. The top branch (momentum encoder+projection
head) is composed of an encoder and a projection head. The bottom branch is the DETR-like
functions, consisting of an encoder, followed by the transformer encoder-decoder. The mo-
mentum encoder and projection head are kept fixed (no gradient flow). The positive/negative
mask is created using the crop coordinates of the global and momentum views.

enabling a balance between spatial smoothness and spatial sensitivity.

• We find that the expressive power of the transformer encoder can eliminate the use of
negatives pairs necessary for the contrasive loss, and still enforce properties of interest.

• Comprehensive experiments using different DETR variants are conducted on COCO,
and the challenging driving dataset BDD100K [39].We observe a constant gain over
the common object detection metrics.

2 Method
The common supervised training implicitly configures the latent space through empirical risk
minimization. However, it is unclear whether better loss functions improving accuracy on
a test set are not violating the speculated topology of a good representation space [2, 15],
through some less understood neural network dynamics. Our algorithm breaks the object
detection learning task into its first principles. The proposed method explicitly forces the
properties of local smoothness of input and representation, and spatial coherence across a set
of observations. The aim is to learn discriminative pixel-to-pixel representations using the
contrastive loss LNCE. Additionally, the cosine loss LCos captures the pixel-to-region consis-
tency. Ideally, LNCE and LCos regularize the latent space so the backbone encoder fθ , and the
transformer encoder Ωω is invariant to small and local changes (i.e., data augmentations).

2.1 Overview of the approach
For an image dataset D = {x1, . . . ,x|D|} where xi ∈R3×H×W , we define a set of transforma-
tions T and P , with empirical probability distribution p(X) sampling a given operation. The
set T contains standard operations as in [4] (i.e., horizontal flip, global cropping, random
resizing). The set P contains standard transformations used in contrastive learning such
as random crops, random jitter in color space, random conversion to gray-scale, random
horizontal flips, and solarization [5, 8]. We denote xe ∼ T (x) and xm ∼P(x). Different from

Citation
Citation
{Yu, Chen, Wang, Xian, Chen, Liu, Madhavan, and Darrell} 2020

Citation
Citation
{Bengio, Courville, and Vincent} 2013

Citation
Citation
{Kornblith, Chen, Lee, and Norouzi} 2021

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Avilaprotect unhbox voidb@x protect penalty @M  {}Pires, Guo, Gheshlaghiprotect unhbox voidb@x protect penalty @M  {}Azar, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020



YASSER DAHOU ET ALL. : AUGMENTING OBJECT DETECTION 5

classification, object detection is a dense prediction task, in which an image-wise contrastive
learning may lead to sub-optimal solutions. Instead, we propose to use the pixel-level con-
trastive learning to regularize the representation space. The aim is to learn representations
capturing discriminative pixel-to-pixel features (i.e., spatial sensitivity) with LNCE. However,
objects usually occupy blobs, hence, pixel-to-region contrast is enforced with LCos. The two
losses are partially adversarial, thus, optimizing to the Nash equilibrium ends in a network
that is effective in detecting continuous object in the space, but also in the detection of
sudden transitions to a different class. There are important differences that distinguish our
approach from previous works [34, 37]. First, the transformer encoder Ωω highly varies the
representations fed by the convolutional encoder, thus, no need for a memory bank to avoid
LNCE collapsing to a trivial solution. Second, we leverage a dynamic threshold for creating
the positives/negatives mask instead of using the ground truth bounding boxes.

2.2 Supervised contrastive object detection

DETR Loss. After using the Hungarian algorithm to compute the optimal matching over
a fixed set of N predictions. Denote yi = (ci,bi) as a sample from the ground truth set (ci:
class label, bi ∈ [0,1]4: bounding box), and corresponding prediction as ȳi = (c̄i, b̄i), the loss
function Lsup(yi, ȳi) is defined as: LCE

i (ci, c̄i)+Lbox
i (bi, b̄i), where:

LCE
i =−1T

ci
log(softmax(c̄i)) (1)

We can observe that the softmax optimizes only for the logits without any access to the
learned representations [27]. Moreover, the softmax cross-entropy loss function highly affects
the penultimate layers [15], but potentially lacks in structuring the representation space. These
issues have been rarely addressed in training object detectors, including DETR-based ones.

Encoder (fe). The encoder is a network fe : xe 7→ Γ parameterised by θe. fe is implemented
as a backbone ResNet50 [11], followed by a 2-layer 1×1 convolutional projection head with
batch normalization and ReLU activation, that reduces the channels dimension from 2048 to
256.

Momentum encoder (fm). Following [8, 13], we adopt the momentum update rule for
fm : xm 7→Ψ, parameterised by θm. fm architecture is identical to fe, and is updated as follows:

θm← βθm +(1−β )θe, (2)

where β is a momentum coefficient (set to 0.99). We place a stop-gradient on θm, and only
the parameters θe are updated by back-propagation. Intuitively, the momentum encoder (fm)
can be seen as a past smoothed version of (fe).

Transformer encoder. Ωω maps Γ
c×h×w to γc×h×w. Γ is first wrapped to a sequence of

size c×hw, then augmented with 2D positional encodings [1]. The multi-head self-attention
layers perform message parsing across Γ channels, in order to capture the contextual informa-
tion. It acts as a smoothing prior, hence, pixels sharing the same semantic class repulsively
attend irrespective of their position in the image, dropping all structural information. Fur-
thermore, γ is the smoothed transform of Γ, holding more coherence both spatially in the
neighborhood of a given pixel i and semantically for further pixels j sharing the same class.
Objects can be fairly queried from such a representation.
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Table 1: Results fo DETR-like models on COCO. Superscript + refers to the two-level cosine
loss applied at two levels of patterns.

Model Epochs AP AP50 AP75 APS APM APL

Deformable DETR [41] 50 43.8 62.6 47.7 26.4 47.1 58.0

Deformable DETR + ours 50 43.8 62.6 48.0 26.6 47.5 57.1
α = 1, β = 1 (+0.0) (+0.0) (+0.3) (+0.2) (+0.4) (-0.9)

Deformable DETR + ours 50 44.1 63.2 48.2 27.1 47.5 57.9
α = 1, β = 0 (+0.3) (+0.8) (+0.5) (+0.7) (+0.4) (-0.1)

Deformable DETR + ours 50 43.8 62.8 47.9 26.5 47.0 58.4
α = 0.2, β = 1 (+0.0) (+0.2) (+0.2) (-0.1) (-0.1) (+0.4)

Deformable DETR + ours 50 44.4 63.5 48.6 27.0 47.6 59.2
α = 0, β = 1 (+0.6) (+0.9) (+1.1) (+0.6) (+0.5) (+1.2)

DN DETR [18] 50 44.1 64.4 46.7 22.9 48.0 63.4
DN DETR + ours 50 44.3 64.3 46.9 22.9 47.9 63.9
α = 0, β = 1 (+0.2) (-0.1) (+0.2) (+0.0) (-0.1) (+0.5)

DN Deformable DETR [18] 50 48.6 67.4 52.7 31.0 52.0 63.7
DN Deformable DETR + ours 50 48.9 67.0 53.0 30.4 51.9 65.1
α = 0, β = 1 (+0.3) (-0.4) (+0.3) (-0.7) (-0.1) (+1.4)

DN Deformable DETR [18] 12 43.4 61.9 47.2 24.8 46.8 59.4
DN Deformable DETR + ours+ 12 43.9 61.8 47.3 26.2 46.9 59.2
α = 0, β = 1 (+0.5) (-0.1) (+0.1) (+1.4) (+0.1) (-0.2)

2.3 Contrastive loss
Given Γ

c×h×w and Ψ
c×h×w computed by fe and fm respectively, the pretext task is to contrast

nearby pixels in the input space, but non-aligned in after performing the crops on x, to generate
xe and xm. The core idea is to preserve locality by maximizing the mutual information between
pairs of spatially close pixels via the pixel-level contrastive loss. A key component is to define
positives/negatives sets, in such a way that LNCE and LSup follow converging landscapes.

Positives/Negatives mask. Using the relative crop coordinates from both views, we
simply calculate the spatial distance between pairs of channel locations in the feature maps
space [37]. Then, the positives and negatives pairs are obtained based on a threshold ’th’:

M(i, j) =

{
1 d(i, j)≤ th,
0 otherwise,

(3)

where i and j are channel locations from the two feature maps, d(i, j) is the normalized
spatial distance. Nevertheless, the random resizing in T to large shapes suitable for detection
requires adaptive threshold, thus, we formulate th as th = 1

S|C| ∑
|C|
c d(i, j)c, (S = 9). UsingM

for all channels, we compute the pixel-level contrastive loss:

Li
NCE =− 1

|Pi| ∑
i+∈Pi

log
exp(Γi ·Ψ+

i /τ)

exp(Γi ·Ψ+
i /τ)+∑ j−∈N j exp(Γi ·Ψ−i /τ)

, (4)

where the anchor pixel i is located in both views wrapped in the feature maps space (i.e., the
mask is calculated using normalized crops coordinate in the feature maps size). Pi and Ni
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Table 2: Results on the BDD100K dataset. Superscript ∗ indicates ResNet-50 Dilated
Convolutions (DC). Superscript + refers to the two-level cosine loss.

Model Epochs AP AP50 AP75 APS APM APL

DETR [4] 150 20.9 44.1 17.0 7.2 24.4 39.9

Deformable DETR [41] 50 31.1 57.7 28.5 14.8 36.6 52.4
Deformable DETR + ours 50 31.5 58.0 29.1 15.1 36.7 52.6
α = 0, β = 1 (+0.4) (+0.3) (0.3) (+0.3) (+0.1) (+0.2)

DN-Deformable DETR∗[18] 50 35.2 62.4 33.0 17.3 41.1 58.3
DN-Deformable DETR∗ + ours+ 50 36.1 63.3 34.3 18.2 41.2 58.4
α = 0, β = 1 (+0.9) (+0.9) (+1.3) (+0.9) (+0.1) (+0.1)

are vector representations of positives and negatives in the second view assigned for pixel i
usingM. τ is a temperature scalar sharpening the distribution, set to 0.3. all representations
are l2 normalized, · denotes the inner (dot) product. The final loss is the average Li

NCE of all
anchors i lying in the intersection of xe and xm as shown in Figure 1. The supervised loss Lsup
optimizes better features for classification and localization; LNCE constraints the latent space
to learn improved spatial sensitivity across discriminative pixels, leading to improved results.

2.4 Non-contrastive loss
The threshold value impacts various object sizes, as negative samples may fall within the
same bounding box, resulting in ambiguous optimization. Thus, we attempt to discard the
negative pairs [8], thus, optimizing only for spatial smoothness. The transformer encoder
enforces strict asymmetry by effectively updating Γ to produce γ , acting as a variational
prior on CNN-based features to better suit transformer decoding. The task is to measure
features consistency among γ , the loss is calculated against Ψ, which holds discriminative
pixel features to some extent [37]. We rely on the transformer encoder expressive power
breaking the symmetry to avoid collapse without the need of negative samples. We formulate
the loss function as:

Li
Cos =

1
|Pi| ∑

i+∈Pi

−γiΨ
+
i . (5)

The mask in Equation (3) is used to retrieve the set of positive pairs Pi for an anchor pixel i.
The final loss function is given by:

LT = LSup +αLNCE +βLCos, (6)

where α and β are hyper-parameters controlling the contribution of LNCE and LCos.

3 Experimental results
We evaluate the proposed algorithm by measuring the common object detections metrics first
on COCO 2017 [19], then on the cars driving object detection dataset BDD100K [39] that
contains 70000/10000 train/val images, covering 10 classes. We train DETR-like models (i.e.
Deformable DETR [41], DN-DETR [18] with the proposed method for further validation of
the hypoethsis, the choice is motivated by the fast convergence within 50 epochs as compared
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Table 3: Results for transferring COCO trained weights on the BDD100K dataset. Superscript
w/o indicates training without our method, whereas superscript w is with our method.

Model AP AP50 AP75 APS APM APL

Linear probes
DN-Deformable-DETRw/o 27.9 51.3 25.8 11.8 32.4 53.9
DN-Deformable-DETRw 28.3 51.6 26.3 11.9 32.5 54.0

Fine tuning
DN-Deformable-DETRw/o 33.0 59.3 31.0 14.8 36.9 58.5
DN-Deformable-DETRw 33.4 59.9 31.9 15.5 38.0 57.8

to DETR [4] (500 epochs). To match their training settings, we initialize the backbones using
ImageNet [16] pretrained weights, but randomly initialize the transformer layers. We adopt
the set of augmentations used in BYOL [8] for xm. The proposed method could be applied to
other non-transformer based detector with careful design to avoid collapse.

Technical details. We add the PyTorch implementation of our approach to each of
the respective models. Training parameters are kept the same as the original approaches.
Experiments are conducted on four Nvidia A 100 GPUs with 80 GB memory per card. The
batch size is set to 12 for most experiments, unless mentioned otherwise.

3.1 Main results
Table 1 highlights the main results on the COCO 2017 validation set. We augment the
different approaches training procedure with the proposed method. We first evaluate the core
hypothesis on Deformable-DETR [41] deriving four variations using different values of α and
β in Equation (6). Jointly training both LNCE and LCos (i.e. α = 1, β = 1) does not improve
the performance, precisely, APL drops by (-0.9), this may be explained by the negative terms in
LNCE, where representations per channel of the same large object are split between negatives
and positives due to the threshold in Equation (3). Lowering the contribution of LNCE in the
gradients (α = 0.2 and β = 1) solves the issue of APL degradation (+0.4). Clearly, however,
it does not improve the global performance among all metrics. This may also suggests that
LNCE and LCos both optimize for spatial smoothness/sensitivity through diverging landscapes,
and can not be jointly optimized. Optimizing for LNCE results in a slight overall improvement
(+0.3) in AP. Finally, the best scores across all metrics are achieved by setting α = 0. AP50 and
AP75 gain (+0.9) and (+1.1) respectively, meaning LCos encourages more accurate bounding
boxes. Larger improvements (+1.2) are observed on APL. This can be linked to better spatial
smoothing, resulting in compact representations across the channels of larger objects. We
train the remaining approaches with this configuration (i.e. α = 0, β = 1).

Lastly, we first train DN-DETR Li et al. [18] using full self-attention as in DETR [4].
With one pattern encoding, a small gain is observed, questioning the effectiveness of LCos
on a single pattern scheme. Then, DN-Deformable DETR exploits the deformable attention,
hence, being able to use three pattern encodings. We observe a slight improvement in AP
(+0.3), a surprising degradation in APS and APM , and a large improvement in APL (+1.4). A
potential hypothesis can be related to LCos operating on the last feature maps of size (c×wh)
with the smallest spatial resolution (i.e., save memory usage as mask size in Equation (3) is
(c×wh×wh)) among the 3 patterns. Thus, over-smoothing this feature maps misrepresented
the small and medium size objects, which usually lie within higher resolution maps.
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Object detection for cars driving on BDD100K. To further validate the effectiveness of
the proposed method, we conducted experiments on a challenging driving dataset BDD100K
[39]. It holds 100K driving videos collected under diverse scene types including city streets,
residential areas, and highways, during shifting weather conditions at different times of the
day. Each video is 40-seconds long and with a FPS of 30. Thus, there are more than 100
million frames in total. Among these frames, only parts of them are labeled for detection (1
frame in each video), with 70K, 10K, and 20K labeled images for train/val/test, respectively.
Altogether, there are 1.8 million labeled objects representing 10 classes, including bus, light,
sign, person, bike, truck, motor, car, train, and ride. Comparing with the commonly used
COCO 2017, BDD100K is more challenging in two aspects: (1) over 55% of objects are of
small size, which requires high resolution in the feature map; and (2) the images are captured
in both daytime and nighttime, posing diverse illumination conditions. We first trained the
existing approaches on the 70k training set of BDD100K as baselines (see Supplementary
for full results). Table 2 shows that all metrics drop by a large margin compared to COCO
(i.e. AP for Deformable DETR drops by (12.7)), highlighting the complexity of this task.
The motivation behind this choice is to measure the model’s capacity on a more complex
distribution. Table 2 depicts that our method slightly improve the metrics over the baselines.
DN-Deformable DETR∗ + ours+ optimizes LCos on two distinctive feature maps of the
multiple patterns training using different thresholds provide for better features for all sized
objects. This setting exhibits the top score for all metrics (i.e. AP (+0.9)).

How does pre-taining on COCO transfer to BDD100K? We study transferring pre-
trained COCO features on BDD100K using the 12 epochs training setting. Using DN-
Deformable DETR, we first freeze the network and train only the classification head. Then,
we proceed with fine-tuning the whole architecture. It can be noticed that initializing with
weights trained leveraging our method surpasses vanilla training across all metrics. This
demonstrates the effectiveness of our method on out of distribution generalization.

Instance segmentation Following [4, 12, 29], we train a segmentation head on top
of the frozen weights using some configurations mentioned in Table 1. This measures the
generalization capacity of each hypothesis space on a disjoint downstream task. We argue
that a regularized space with the aforementioned prior properties should be suitable for
instance segmentation. The segmentation head consists of 5-blocks of (2D Convolution,
Group Normalization [36], ReLU), augmented with three FPN layers [20], it outputs a
binary mask for each detected object. We first initialized with vanilla Deformable-DETR
weights and trained the segmentation head for 15 epochs using the DICE/F-1 loss [25]. This
setting achieves the following scores: [AP: 21,5, APS: 17.8, APM:23.6, APL:26.6]. Then,
Deformable-DETR+ours weights lead to a notable gain of (1.5), (i.e. [AP: 21,5 → 23.0,
APS: 17.8→ 20.2, APM:23.6→ 24.9, APL:26.6]→ 26.9). Results on instance segmentation
validate the hypothesis that enforcing spatial smoothness on the latent representation favors
better generalization on a dense prediction task unlike object detection.

4 Conclusion and future works
We introduced a novel training framework for Detection Transformer based models leveraging
an objective function at the latent space level to enforce prior knowledge, which improves
the generalization and expressive power of the model. The objective function explores pixels
semantic consistency. Hence, spatially close pixel features are encouraged to maximally share
information. We outline two important directions to be addressed:
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Robustness against adversarial attacks. Object detectors are intrinsically vulnerable
to adversarial attacks [24] such as DPATCH [23], or latent space noise perturbations [3].
Studying the effect of these attacks on a regularized latent space is interesting, and can
potentially bring new insights to the community in terms of model interpretability.

Intermediate objectives impact on the transformer-encoder layers. [15] measured the
similarity between hidden representations of networks using the centered kernel alignment
metric [14], and noticed that differences among loss functions are apparent only in the last
layers of the network, and do not impact the latent space. Exploring the effect of the pixel-level
consistency loss on the transformer-encoder layers, and addressing the question of whether
this objective forces the layer to be semantically discriminative is a promising line of research.

Furthermore, the proposed method leads to encouraging results and demonstrates excellent
transfer-ability to other dense image prediction tasks such as instance segmentation. However,
this training paradigm raises new challenges such as balancing the different loss functions,
and carefully creating the negative/positive pairs to handle varying sized objects. We believe
this is an important step towards explicitly learning a good representation space for the object
detection task.
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