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Abstract

Self-supervised learning has the potential to explore large-scale unlabelled data for
model training. Existing action localisation methods mainly rely on pre-trimmed (pre-
segmented) and labelled video clips for model learning. However, in the absence of
between-action context, these methods are suboptimal for temporal action localisation
(TAL) on untrimmed videos. We solve this problem by exploring self-supervised learn-
ing for TAL. In particular, we introduce a simple yet effective model, called NEgative
MIning in self-supervised action localisation (NEMI), to jointly predict (localisation)
content-consistent video fragments, which are considered as activities, and distinguish
(classification) them from the other background video content in context. We further
explore non-local inter-activity information by training a Transformer-based approach
to boundary localisation, which is then adapted to the TAL task. By locating activities
and learning to distinguish activities from the context, NEMI can capture the semantic
change in a video which is beneficial for TAL in detecting video action boundaries. We
evaluate the effectiveness of NEMI by applying the learned model to downstream tasks
of temporal action localisation and action detection. Experiments show that NEMI can
improve the performance of existing methods by a large margin.

1 Introduction
Temporal action localisation (TAL) [4, 10, 22, 33] has received extensive attention in re-
cent years, given its wide applications in critical scenarios e.g. human-computer interac-
tion, intelligent surveillance, and crime tracking. To search certain actions in an untrimmed
raw video, previous methods usually train a model to determine the temporal location with
boundary labels that are manually annotated. However, the length of videos varies from min-
utes to hours, plus the number of active instances in a video is unknown a-priori, making
annotating large-scale untrimmed video action datasets extremely laborious and unscalable.
Additionally, because there is no clear definition of the beginning and ending of an action in
a video [41], these temporal annotations are prone to be subjective and inconsistent across
different annotations, intrinsically offering very noisy labels to model training.
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To explore unlabelled raw video data and avoid inconsistent labelling, self-supervised
training has attracted increasing attention in video analysis and understanding [6]. Recent
attempts have exploited learning video action representation from the order of frames [46],
the speed of the video [49], and the similarities in video clip pairs [37]. The general dia-
gram of these methods is to train a model with pre-trimmed videos [15, 18, 35] then adapt
it to the downstream action recognition tasks. However, the current widely adopted pre-
trimmed datasets contain only action instances in the video while their temporal context is
discarded. As a result, these methods are inferior to localising actions in untrimmed raw
videos that require automatic localisation of action temporal boundaries. In contrast, some
other methods [14, 47, 52] have been proposed to dedicatedly localise action boundaries by
utilising pseudo labels from pre-trimmed videos, which fails to explore the action context for
boundary-sensitive learning. Inspired by [43] which emphasises the importance of negative
samples, we argue that the discarded action contexts are equivalently important for boundary
learning, as they provide boundaries to be more aligned with the TAL task.

We address these problems by exploring negative mining in self-supervised learning from
untrimmed video for the task of TAL. Such untrimmed videos can both minimize human
labelling bias and provide richer context information surrounding actions of interest. In
particular, we solve two problems: (1) How to generate consistent pseudo-labels for self-
supervised learning? (2) How to tailor a pretext task to promote the generalisation ability
for TAL? Our solution is formulated as NEgative MIning in self-supervised action localisa-
tion (NEMI). Specifically, to address the first problem, we consider a video as a series of
activities. Within each activity, we assume its content is relatively consistent. We consider
that an activity is a hypothesis of an action in an untrimmed video when labels are unavail-
able. A model is then trained to predict the location of each activity. We also consider that
not only the distinctive characteristics of different actions but also their surrounding context
in the video are critical for fine-grained TAL task. Therefore, we further introduce a con-
trastive loss with negative sample mining to ‘pull’ closer features of the same activity while
to ‘push’ away features of other activities in context. To address the second problem, we
adopt a pre-training and fine-tuning strategy: First, we consider NEMI as a proposal gen-
eration model and optimize it with a large-scale dataset without human annotations, as the
pre-training. Subsequently, the optimized model is transferred to perform action localisa-
tion by fine-tuning on a small-scale dataset. To that end, we explore a Transformer-based
approach RTD-Net [36]. RTD-Net extracts video features by an I3D model [3] and adopts
a Transformer architecture for direct proposal generation. It has ≈ 32M parameters in the
Transformer architecture that are not pre-trained. In contrast, the I3D model has ≈ 25M [3]
pre-trained parameters from large-scale datasets with potentially better generalisation ability.

The contributions of this work are: (1) We make the first attempt to exploit untrimmed
videos for TAL model pre-training by exploring rich between-action context information
without involving human labels. (2) We devise consistent self-supervised labels by the
video activity decomposition and the inter-activity re-assembling strategy. Based on that, the
model in trained to complete the activity localisation and negative mining tasks for boundary-
sensitive and semantic relationship learning. (3) We consider that an activity is a hypothesis
of an action when labels are unavailable, and propose to empower the generalisability of
the TAL model by pre-training it with activity localisation and transfer it to action localisa-
tion. We demonstrate the superiority of NEMI over the existing SOTAs on both the temporal
action localisation and temporal action detection tasks.
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2 Related Works

Temporal Action Localisation. The task of temporal action localisation (TAL) is to lo-
calise the temporal boundaries of an action instance. Previous anchor-based methods [9, 10,
13, 51] generate candidates through a length-predefined sliding window. Boundary-based
methods [20, 21, 23, 24] firstly predict the boundary probabilities or actionness score for
each temporal location and design dedicated matching strategies to form proposal candidates.
Subsequent methods, such as CTAP [11], MGG [26], RBRNet [25] and RapNet [8] refine
previous methods and propose to adjust the sliding-window proposals with boundary or ac-
tionness scores. These methods rely on hand-crafted post-processing designs, and are thus
sensitive to noise and unreliable in model generalisation. End-to-end methods [28, 36, 50]
aim to predict the boundaries directly. In this regard, Yeung et al. [50] explores rein-
forcement learning for proposal prediction. AGT [28] proposes to use the encoder-decoder
Transformer [39] and build non-linear temporal dependencies for video frames. RTD-Net
[36] proposes to replace the encoder with an MLP to address the over-smoothing problem
brought about by the feature slowness in videos. RTD-Net [36] trains the transformer-based
proposal generator from scratch. In our method, we pre-train the RTD-Net [36] to complete
the activity boundary localisation task and transfer it to the TAL task to compare with their
training-from-scratch strategy.

Self-Supervised Learning. Self-supervised learning [12] takes advantage of the large-
scale unlabelled data for model training. It directly utilises the supervision signal from the
data itself, without requiring any tedious labelled data. The trained models are expected to be
generalisable and ready to be adapted to a specific downstream task. It has been widely ex-
plored for video understanding, with the focus on boundary agnostic and boundary sensitive
self-supervised learning.

Boundary Agnostic Self-Supervised Learning with trimmed videos [15, 18, 35] has wit-
nessed great progress in recent years. Early approaches explore video properties for label
generation. They usually apply a learnable transformation [27] on the video and learn the
feature representations by a visual encoder [34, 38, 45], and then followed by a classifier to
predict the transformation parameters. Wang et al. [42] shuffles the frames and takes the
original order as the learning target. Fernando et al. [7] designs an odd-one-out network
to recognise the unrelated frame in a video sequence. Wei et al. [44] exploits the arrow of
time as a supervisory signal. 3D-cubic [19] extends the 2D image jigsaw puzzles [29] to
3D videos. Jing et al. [17] proposes to rotate video clips and use the rotation angle as the
learning target. Wang et al. [40] calculates action statistics in a video and train the model
by regressing the motion and appearance information. Recently, the inter-video distance has
been exploited as a supervisory signal in contrastive learning-based methods [12]. Seco [48]
takes the clips generated from the same video as positives and clips from different videos as
negatives. IIC [37] further extends the negative samples to intra-negative and inter-negative
samples. CVRL [32] explores data augmentations for video representation learning. Video-
MoCo [30] improves MoCo [12] for videos by a temporal decay. Even though existing
methods are beneficial for the action recognition task, they are boundary agnostic and sub-
optimal for the TAL task.

Boundary Sensitive Self-Supervised Learning generates pseudo boundaries from videos
as the supervision signal and trains models to perceive these boundaries. Jain et al. [14]
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Untrimmed Video

Inter-Activity Re-Assembling

Video Decomposition

Activity (a) Activity (b) Activity(c)

Feature  Generation

Task Completion2

b'a cb

…

Queries

Transformer-Based
Proposal Generation Model 

Pseudo Label Generation1

Figure 1: Illustration of the NEMI framework. Firstly, we generate pseudo labels by video
decomposition and inter-activity re-assembling. Then we train a model to locate the position
of the activities and learn to pull in the same activities and push away the activity and its
context.

proposes to generate pseudo labels for action localisation task by abruptly changing de-
tectors to get several atomic actions, and the trained model is then transferred to TAL on
untrimmed videos. As a comparison, PAL [52] designs the self-supervision signal by con-
catenating trimmed videos to detect their boundaries for TAL task-specific pre-training. BSP
[47] proposes to synthesise boundaries by concatenating trimmed videos and then train the
model to predict the boundary category. Despite their effectiveness, we argue that relying on
trimmed videos to form boundaries have the following limitations: (1) The current trimmed
video datasets provide weakly-labelled video clip instances with action class label for video
clip. These are unreliable/unable to provide fine-grained starting and ending time indices of
actions; (2) The inter-action boundaries are semantically different from the action-context
boundaries, as the action and its context background usually occur closely. Thus, the model
is still insensitive to true boundaries between an action and its context. We propose to solve
these problems by introducing contrastive learning to self-supervised learning on untrimmed
videos, and providing reliable supervision to learn a generalisable model with extraordinary
ability to localise temporal boundaries.

3 Methods

3.1 Problem Definition
Previous works [19, 46, 49] simply design pretext tasks over pre-trimmed video datasets, e.g.
(UCF101 [35], HMDB51 [15], Kinetics [18]), while overlooking the importance of action
boundaries, which is equivalently important for TAL. Recent works [14, 47, 52] use automat-
ically labelled boundaries from pre-trimmed videos to optimise model training. They do not
explore any between-action context information for action temporal boundary localisation.

To address the limitations of existing works, we propose to explore natural untrimmed
videos for boundary-sensitive learning, which is more generic and practical for real-world
applications. Once a discriminative yet generalisable model is trained, we then adapt it to
the downstream TAL by task-specific fine-tuning. As shown in Fig.1, we design a multitask
learning pipeline to predict the pseudo boundary labels which are generated over untrimmed
videos. Specifically, we propose pseudo boundaries generation by adaptively decomposing
one video into several activities. To make the decomposed activities more discriminative,
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we propose an inter-activity re-assembling strategy by injecting a randomly sampled activity
instance into the untrimmed video. For task completion, we extract video-level feature repre-
sentation by utilising 3D-CNN visual encoder and subsequently apply a Transformer-based
model to predict the activity boundaries. Given the non-local perception merit of the self-
attention modules, the output feature representations can fully consider the inherent relation
with other activities and are ready for the multitask predictions, i.e. location prediction and
contrastive learning with negative mining.

3.2 Pseudo Label Generation
The overall idea of pseudo label generation is to decompose a untrimmed video into several
activities and then perform inter-activity re-assembling strategy to obtain the boundaries for
model optimisation. The decomposition of untrimmed video is decisively important, as it
determines the quality of the pseudo label. In this regard, we propose to use feature-level
abrupt change as the criteria for activities localisation. Such a strategy has the advantage of:
(1) the content is comparatively consistent within each activity; (2) the activity is temporally
scale-invariant, as its length is adapted to the video content [14].

Specifically, suppose that we have an untrimmed video V from datasets D, where V =
{ ft |t ∈ [1,T]}, and ft is the t-th frame in V , with T is the total number of frames. We first
extract the frame-level representations as F( ft) and then measure the feature-level variations
between each adjacent frames as a criteria to measure the change of the video content. If the
measurement of Manhattan distance is larger than the threshold τ , it would be regarded as an
activity change between fi and fi+1, where fi is the end of the previous activity while fi+1 is
the beginning of the next activity. The action changes are calculated as:

C = {i|i : |(F( fi+1)−F( fi)|> τ}, i ∈ [1,T −1] (1)

To make the measurement more robust to reflect the activity boundary, we explore two
types of features: HOG feature and CNN feature. The HOG feature is dedicated to reflect-
ing image-level inter-frame variation [41] while the CNN feature is in high-level to reflect
the semantic variation [14]. Given the pseudo-labelled action boundaries C, the segmented
activities in video V are denoted as Va = {(Ci,Ci+1−1)}, where i ∈ {1,2, ...,N} and N is the
total number of activities in V . Learning to predict the pseudo label empowers the model to
locate the boundaries between activities.

To further encourage the model to distinguish the semantic context, we propose the inter-
activity re-assembling strategy by randomly injecting a sampled activity instance into the
untrimmed video. Specifically, the activity b′ is cropped from one of the existing activities b,
as shown in Fig. 1, where b and b′ are regarded as positive samples as they display the most
similar semantic information, while the other contextual activities are considered as negative
samples in contrastive learning.

3.3 Task Completion
We consider NEMI for a boundary localisation task by the two steps: feature extraction and
proposal generation.

Feature Extraction The untrimmed video with the pseudo boundary labels is firstly seg-
mented into equally sized temporal intervals called snippets, and then a feature generation
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network is applied to extract representation for each snippet. We use an I3D model pre-
trained on Kinetics [18] as the feature extractor and freeze the parameters in the following
process. A stack of RGB and optical flow frames from each snippet are fed to I3D network
to extract the spatial and temporal representation respectively, then they are concatenated to
create the final feature.

Proposal Generation To take the non-local information across different activities into
consideration, we employ a Transformer-based action localisation model RTD-NET [36]
as the baseline. Not only can Transformer blocks build non-linear dependency in the snippet
sequence, but also they can predict the action proposals in a direct paradigm. As shown
in Fig. 1, we consider NEMI for an activity localisation task, for which the labels are the
activity boundaries generated in previous steps (see Section 3.2).

We design two types of localisation strategies with different query initialisations: The
first one is called ‘activity localisation’, where the transformer queries are randomly ini-
tialised. The second is ‘activity query’ as inspired by the image patch query [5] in object
detection, where the transformer queries are initialised by activity features.

Considering the objective of the model is to locate an activity, it can be regarded as a
binary classification task. We assign the query a binary label by comparing its temporal
Intersection over Union (tIoU) towards the target to a given threshold. Then a binary cross-
entropy (BCE) loss is introduced to determine if this proposal is an activity, as follows:

Lcls =− 1
K

K

∑
i=1

(y log(pi)+(1− y) log(1− pi)), (2)

where K is the number of the proposals and pi is the probability that the i-th proposal is an
activity. To predict the boundaries, we also use the localisation loss Lloc to minimise the ℓ1
distance, and the overlap loss Loverlap to minimise the tIoU loss as:

Lloc =
1
M

M

∑
i=1

∥∥b̂i
s −bi

s
∥∥

l1
+
∥∥b̂i

e −bi
e
∥∥

l1
,

Loverlap =
1
M

M

∑
i=1

1− tIoU([b̂i
s, b̂

i
e], [b

i
s,b

i
e]),

(3)

where M is the number of ground truth proposals in the video, b̂i
s/b̂

i
e denotes the predicted

start/end time-stamp of the proposal, and bi
s/b

i
s is the ground truth.

To provide auxiliary supervision to learn automatic label assignment, we tailor a con-
trastive loss to maximise the similarity of queries that locate on positive pairs while mini-
mizing those that locate on negative pairs. Given a pair of positive samples in the untrimmed
video as ai and a j, their corresponding queries are denoted as: q(ai) and q(a j). The con-
trastive loss is formulated as:

Lcon =− log
exp(sim(q(ai),q(a j)))

∑
M
k=1,k ̸=i exp(sim(q(ai),q(ak)))

(4)

where sim(·) is the cosine similarity function. The overall learning target is L = α ·Lcls +β ·
Lloc + γ ·Loverlap +η ·Lcon.
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4 Experiments
In this section, we firstly describe the experimental settings of our methods, then we compare
our NEMI with other methods on two tasks: temporal action localisation (TAL) and temporal
action detection (TAD). Finally, the ablation study is carried out to validate the effectiveness
of model components.

4.1 Experimental Settings
4.1.1 Datasets

We implement our method on two untrimmed action localisation datasets: Thumos14 [16]
and ActivityNet-1.3 [2]. These datasets are suitable for our method because they provide
natural untrimmed videos.
Thumos14: Thumos14 [16] dataset has 101 classes for action recognition and 20 classes for
action detection. It is composed of four parts: training data, validation data, testing data, and
background data. In our experiment, we use the validation set for training and the testing set
for evaluation which contains 200 and 213 untrimmed videos respectively.
ActivityNet-1.3: ActivityNet-1.3 [2] is a large-scale action detection benchmark, it contains
19,994 videos with 200 action classes annotated. ActivityNet-1.3 is divided into training,
validation, and testing sets by a ratio of 2:1:1.

4.1.2 Implementation Details

For video feature extraction, the I3D pre-trained on Kinetics [18] is used as the feature gener-
ator. We divide the untrimmed video into equal-length snippets and generate the representa-
tion for each. Following the standard protocol [23, 51] in pre-processing, the snippet length
is set to 8 for Thumos14, and 16 for ActivityNet-1.3. During the training, the parameters for
the visual encoder I3D are frozen. For proposal generation, we choose RTD-Net [36] as the
proposal generator. In their implementation of Transformer, they replace the Transformer
encoder with a 3-layer MLP. For the Transformer decoder, the number of query patches is
set to 32 for Thumos14 and 100 for ActivityNet-1.3, and the number of decoder layers is 6.
We use PyTorch [31] to implement the method and use AdamW for optimisation. The batch
size is set to 32. The learning rate is 0.0001 and we update the learning rate every 30 epochs
by 0.1. The training stops after 100 epochs. For video decomposition, the threshold τ to
decide an activity change is set to 0.0715 following [41] for HOG feature and the ratio is set
to 0.01 to determine the threshold for CNN feature as [14].

4.2 Comparison with the SOTAs
In this section, we start our experiments by comparing NEMI with other methods. For
evaluation, we firstly pre-train a model on the NEMI task and then apply it to two different
tasks, temporal action localisation (TAL) and temporal action detection (TAD).

For temporal localisation, we calculate the Average Recall (AR) with Average Number of
proposals per video, which are denoted by AR@AN. The experimental results on Thumos14
are summarized in Table 1. With pre-training on NEMI, the AR@50 performance can be
improved from 40.1% to 41.7%, AR@100 from 48.3% to 49.7%, which demonstrates our ef-
fectiveness. To further evaluate the quality of proposals generated by NEMI, we put the pro-
posals into temporal action detection tasks and use UNet [41] as the proposal classifier. Mean
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Method TAL TAD
@50 @100 @200 @500 0.7 0.6 0.5 0.4 0.3

TURN [9] 21.9 31.9 43.0 57.6 6.3 14.1 24.5 35.3 46.3
CTAP [11] 32.5 42.6 52.0 - - - - - -
BSN [23] 37.5 46.1 53.2 60.6 20.0 28.4 36.9 45.0 53.5
MGG [26] 39.9 47.8 54.7 61.4 21.3 29.5 37.4 46.8 53.9
BMN [24] 39.4 47.7 54.7 62.1 20.5 29.7 38.8 47.4 56.0
DBG [20] 37.3 46.7 54.5 62.2 21.7 30.2 39.8 49.4 57.8
RapNet [8] 40.4 48.2 54.9 61.4 - - - - -
BC-GNN [1] 40.5 49.6 56.3 62.8 23.1 31.2 40.4 49.1 57.1
PAL [52] - - - - 10.9 19.3 30.8 40.3 46.8
RTD-Net [36]* 40.1 48.3 55.6 62.9 22.5 34.0 42.8 50.1 56.0
NEMI(ActivityNet-1.3) 41.1 49.2 56.2 62.6 23.3 34.8 44.5 52.2 57.8
NEMI(Thumos14) 41.7 49.7 56.3 62.8 25.3 36.8 46.1 54.0 59.6

Table 1: Comparison on the TAL task in terms of AR@AN, TAD of mAP@tIoU, on
the test set of Thumos14. RTD-Net* denotes our reproduction based on the author re-
leased code. NEMI(ActivityNet-1.3) denotes NEMI pre-training on ActivityNet-1.3 and
NEMI(Thumos14) on Thumos14.

Method CTAP [9] BSN [23] MGG [26] BMN [24] RTD-Net [36] NEMI
AR@1 - 32.17 - - 33.05 33.30
AR@100 73.17 74.16 74.54 75.01 71.70 71.70
AUC 65.73 66.17 66.43 67.10 65.78 65.20

Table 2: Comparison between our method with other state-of-the-art proposal generation
methods on validation set of ActivityNet-1.3 in terms of AR@AN and AUC.

Average Precision(mAP) with tIoU threshold set [0.3 : 0.1 : 0.7] are calculated and shown
in Table 1. When pre-training with NEMI, it obtains 25.3%/36.8%/46.1%/54.0%/59.6%/ on
the tIoU of 0.7/0.6/0.5/0.4/0.3 respectively and outperform the RTD-Net [36] by significant
margin. These results confirm that proposals generated by NEMI have high quality and work
generally well in action detection frameworks.

One can see from Table 1 that pre-training on the large-scale dataset (ActivityNet-1.3)
brings less performance gain to that on the small-scale dataset (Thumos14). We argue that
this is caused by the domain gap between the datasets used in the pre-training and fine-
tuning stages. Even though, pre-training on ActivityNet-1.3 still consistently leads to better
performance and outperforms the baseline model, i.e. RTD-Net. Table 2 shows that the
proposed NEMI can obtain comparable result to RTD-Net, while bringing faster convergence
on both large-scale and small-scale datasets, as shown in Fig.3 (a) and (b).

4.3 Ablation Study
In this subsection, we conduct further studies to experimentally investigate the effectiveness
of exploring the action context for boundary learning. Both the pre-training and fine-tuning
are conducted on the Thumos14 [16] dataset in this subsection. We report the performance
on TAD to compare their effectiveness.

Component Analysis As described in Section 3.2, we utilise two features for video de-
composition: HOG feature and CNN feature. We start our ablation study by comparing
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Figure 2: Ablation studies between video decomposition features (a), activity localisation
strategy (b) and the contrastive learning (c). The y-axis represents the mAP scores and the
x-axis is the tIoU.
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Figure 3: Visualisation of AP learning curve on Thumos14 (a), on ActivityNet-1.3 (b), the
transformer attention weight (c).

these two features. The results are summarized in Fig. 2 (a). From the results, we observe
although both features give good performance, the HOG feature is better. We attribute this
to that the HOG feature considers overall information in each video frame whilst I3D pre-
trained by Kinetics focus more on areas of movement only [3]. In the remaining experiments,
we choose the HOG feature by default. Then we compare the strategy to locate the activities
between activity localisation and activity query in Fig. 2 (b). Also, we add the contrastive
learning branch and show its performance in Fig. 2 (c). With contrastive learning, the model
yields better performance because it can capture the activity semantics.

Visualisation Fig. 3 (a) shows the AP@50 learning curves on Thumos14. NEMI outper-
forms RTD-Net with better convergence. The performance is more noticeable after epoch
50. In 3 (b), we show the AP@100 learning curve in the first 50 epochs on ActivityNet-1.3,
even though NEMI is comparable to RTD-Net in terms of the performance, it brings faster
convergence. To further demonstrate the effectiveness of NEMI, we visualise the normalised
multihead attention map of the last Transformer decoder layer in Fig.3. As the warmer the
colour denotes the greater the weight, one can see that the queries are more focused on the
boundaries.

5 Conclusion
In this work, we introduce a novel negative mining self-supervised learning method referred
to as NEMI to explore untrimmed videos for learning temporal action localisation (TAL)
task-specific model pre-training. Particularly, we first decompose a untrimmed video into ac-
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tivities (hypotheses of actions when labels are unavailable). Then we explore a transformer-
based proposal generation model to initialise estimations (proposals) of boundary localisa-
tion and optimise it to the TAL task. Experimental results show the effectiveness of NEMI on
two downstream tasks: Temporal action localisation and action detection. NEMI is superior
because it encourages the model to locate activities by explicitly making contrastive learning
against other activities in its surrounding context through negative mining. This is shown to
be highly effective in optimising self-supervised learning for temporal action localisation.
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