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Abstract

Neural networks trained on standard image classification data sets are observed to
be less robust to distributional shifts and pertain to certain levels of bias in representa-
tions. Thus, it is pertinent to identify the kind of objective function that could correspond
to better performance for data with biases and distribution shifts, and how can that ob-
jective function be justified to be the apt choice. There is, however, less literature that
focuses on the choice of the objective function and its representational structure when
trained on such data sets. In this work, we analyse the performance and the internal
representational structure of convolution-based neural networks (eg. ResNets) trained by
varying objective functions on biased and out-of-distribution (OOD) data. Specifically,
we interpret similarities in representations (using CKA) acquired for distinct objective
functions (probabilistic and margin-based) and provide a detailed analysis of the cho-
sen ones. Our analysis reports that representations acquired by ResNets using Softmax
Cross-Entropy (LSCE ) and Negative Log-Likelihood (LNLL) as objectives are equally
competent in providing superior performance and fine representations on OOD and bi-
ased data. Subsequently, we interpret that the ResNets are less likely to be robust on
cross-data generalisation without refined representational similarity.
Code: https://github.com/gnyanesh-bangaru/loss-analysis-cka

1 Introduction

The advent of deep learning has provided us with robust models and the finest neural ar-
chitectures. Even with tremendous performance, most neural networks do not discriminate
representations well as they are trained in a controlled setting [25]. They thus tend to per-
form poorly with distributional shifts and biases in the data. Various methods with neural
network optimisation or a new paradigm of solving were implied to mitigate this issue [2],
[9], [21], [28].
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Dataset Kind Dataset Name Classes Train-Val-Test
Generic MNISTS 10 50k-NA-10k
Generic CIFAR-10S 10 50k-NA-10k
Generic ImageNet-200 200 100k-10k-10k
Biased C-MNISTS 10 55k-5k-10k
Biased CIFAR-CS 10 45k-4.8k-10k
OOD MNIST-MS 10 59k-NA-90k
OOD ImageNet-R 200 NA-NA-30k

Table 1: The above table illustrates three kinds of data sets containing i.e. generic, biased,
and OOD samples. ’NA’ is specified to denote the absence of samples for that particular
split. The tag XS denotes that the data set X is considered to be small.

In the existing literature, the work of Simon et al. [16] has provided insight on the trans-
ferability of representations when exposed to various loss functions, but has focused mainly
on probabilistic objectives. Kim et al. [13] utilised the gradient reversal layer and proposed
a novel regularised loss function based on mutual information obtained from InfoGANs [6]
to unlearn the target bias, that is, the bias present in the data. This eventually minimises the
detrimental effects of bias in the data. Adeli et al. [1] proposed a loss function for adversarial
training with two objectives to learn features that have maximum discriminative power and
minimal statistical dependencies with protected bias. Certain works provided novel optimi-
sation methods to solve the bias problem [2], [21]. StableNet by Zhang et al. [28] reduces
the statistical relation between irrelevant and relevant features acquired from the data. To
achieve this, they have implied a sample weighting technique and trained on a new objective
which is modified on SCE. Under different settings, StableNet reported superior performance
for various OOD datasets including MNIST-M. Sunil et al. [27] proposed a new method of
solving the OOD problem using the principle of abstention (which encourages to predict the
sample classes which were unseen by the model) to provide OOD generalisation.

So, we question thus: what could be an optimal objective function for data with biases
and distributional shifts? Eventually, what kind of representations are learnt by the neural
networks when exposed to such data? How are the internal representations of neural net-
works altered by varying the data samples? Finally, how transferable are the representations
that are trained with data biases and data with distributional shifts?

Hence our work is motivated to address the above problem and provide some insights by
conducting extensive analysis. The existing literature is less evident on the use of objective
functions on data with biases and distributional shifts. The representational characteristics of
a given objective function are not specifically studied. The transferability of the representa-
tions—produced by training neural networks on biased or OOD data—to standard classifica-
tion data is not illustrated. Hence, these concerns motivate us to understand the behaviour of
neural networks on various data sets, mainly biased and OOD. First, we study the empirical
performance of the objective functions by dividing them into two variants: a) probabilistic,
and b)margin-based. Secondly, we analyse the importance of individual objective functions
which provide representation structure with good generalisation and transferability at an in-
terpretable perspective. Additionally, we see the potential of CKA as one of the criterion to
measure the Interpretability of the neural networks [12].
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2 Setup

Terminology The input data is represented as X ∈ {x(1),x(2), . . . ,x(n)} where n is the to-
tal number of samples. The encoder Enc(.) is used to extract features from a given in-
put X . The features extracted from the encoder are presented as f v ← Enc(X); where
f v ∈ { f v(1), f v(2), . . . , f v(n)}. The dimensions of the feature vector vary by changing the en-
coder. As most of the experiments were carried out using a supervised framework, the data
sets do have certain ground truth labels, and these are represented as Y ∈ {y(1),y(2), . . . ,y(n)}.
The activation functions, sigmoid and softmax, are indicated by σ(ai) = 1/(1+ e−ai) and
S(ai) = eai/∑ j ea j , respectively. The loss (objective) function, is denoted by L(.) and the
suffixes indicate its specified variant. The norms ∥ · ∥1 and ∥ · ∥2 indicate Manhattan and
Euclidean norms1 respectively.

Datasets As mentioned, we choose the data for solving three diverse problems. First,
we consider well-studied and experimented datasets such as MNIST [19], CIFAR-10[18]
and ImageNet-200. These data sets are widely used for standard image classification tasks;
also, they do not have inherent biases and do not contain OOD samples. Next, Colored
MNIST (C-MNIST) and Corrupted CIFAR-10 (C-CIFAR) [20] data sets are utilized for
understanding biased representations. For both the datasets, C-MNIST and C-CIFAR, we
perform experiments according to Lee et al. [20]. Lastly, we consider data with distributional
shifts such as ImageNet Renditions (ImageNet-R) [8] and Modified MNIST (MNIST-M) [7].
The collection of data sets considered for experimentation are tabulated in Table 1.

Models In this work, we use ResNet18 and ResNet50 to understand convolution-type rep-
resentations. ResNet18 is used for small data, which are illustrated in Table 1, similarly, for
medium-sized data, we imply ResNet50. We have considered standard ResNets with global
average pooling. The fully connected layers for ResNet18 and ResNet50 are [512-c] and
[2048-512-c] respectively (Where c denotes the number of classes). Intermediate dropout
layers are used with a drop rate of 40% and a set constant for all data sets to have a fair
evaluation.

Training and fine-tuning To train each model we utilized Adam [14] as an optimizer
with a standard learning rate of 10−3 and a weight decay of 10−5. For certain executions,
we utilised pre-trained ImageNet weights and fine-tuned the models on that specific data
set (and when not particularly mentioned, we trained the model from scratch). We fed 512
samples in batches to neural networks by varying the objective functions. The early stopping
criterion is embedded with the patience of 12 epochs to ensure the model does not over-fit
with excessive training. The results reported in Tables 3 and 4 are produced without any
augmentations (except normalisation) and pre-trained weights.

3 Empirical Analysis
The choice of the objective function to train a deep neural network, on specified data remains
a question. Janocha et al. [11] provided a theoretical justification and conducted experiments

1Suppose, a ∈ Rn then, ∥a∥1 = ∑
n
i |ai| ; ∥a∥2 =

√
∑

n
i a2

i
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Objective Function Equation

Softmax Cross-Entropy (LSCE ) LSCE( f v(i),y(i)) =−∑
C
c=1 y(i)c log

(
S( f v(i)c )

)
Binary Cross-Entropy (LBCE ) LBCE( f v(i),y(i)) = y(i)log(σ( f v(i)))+(1− y(i))log(1−σ( f v(i)))

Negative Log-Likelihood (LNLL) LNLL( f v(i),y(i)) =−∑
C
c=1 y(i)c log

(
f v(i)c

)
Mean Absolute Error (L1) L1( f v(i),y(i)) =−∑

C
c=1 ∥y

(i)
c −S( f v(i)c )∥1

Mean Squared Error (L2) L2( f v(i),y(i)) =−∑
C
c=1 ∥y

(i)
c −S( f v(i)c )∥2

2

Sum-of-Squares (LSoS) LSoS( f v(i),y(i)) = 1
C ∑

C
c=1

[
αy(i)c ( f v(i)c −β )+(1− y(i)c )( f v(i)c )2

]
Table 2: The above table illustrates all the objective functions that are experimented with in
this work.

on MNIST pointing out the importance of L1 and L2 not just as regularizers, but as objec-
tive functions for better generalisations. Hui et al. [10] empirically proves that square loss
with a little parametric tuning would produce significant results for most tasks of natural
language processing (NLP) and automatic speech recognition (ASR). Hui et al. [10] specif-
ically mentioned that the proposed square loss is not brittle for randomised initialisation.
A recent analysis by Simon et al. [16] provides insights noting that the representations ac-
quired to classify certain tasks with more class separation lead to poor transferable features.
This work implies various objective functions to observe both the performance and quality
of representations for the standard computer vision classification data sets.

The previous literature focuses on the training and transferability of features acquired by
training standard neural architectures with varying objective functions. But, there is sparse
literature noting the relevance of both probabilistic and margin-based objective functions
on data with biases and distributional shifts. Hence, we provide empirical analysis for two
variants of objective functions to understand the performance of each objective function on
various data sets mentioned in Table 1.

3.1 Probabilistic Objectives
Probabilistic objective functions calculate the error that approximates the underlying proba-
bilities for representations acquired from an encoder (ResNet). In this paper, we include three
probabilistic objectives and they are detailed in Table 2. First, the Softmax cross-entropy [5],
a highly used objective, is obtained by applying softmax activation in the final layer of the
neural network, and this feed is minimised by the negative log-likelihood (NLL). Next, Bi-
nary cross-entropy (BCE) is obtained by applying sigmoid activation (σ(·)) at the final layer
of neural networks and this information is minimised by NLL. Primarily, the BCE loss func-
tion is used for binary classification problems but, a recent work empirically proves that its
implication on multi-class would lead to better performance [3] by applying the one-vs-rest
strategy. Finally, the likelihood provides the joint probability of the sample distribution and
minimises the negative logarithm of the obtained likelihood [4].

3.2 Margin-based Objectives
Margin-based objective functions calculate the error by discriminating the representations
extracted from an encoder (ResNet). Similarly to probabilistic objectives, we include three
margin-based objectives, which are detailed in Table 2. First, the mean absolute error (L1 ob-
jective function) finds the Manhattan distance between the two representations. We acquire
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Objectives Variants Generic Biased OOD Mean
CIFAR-10 MNIST ImageNet-200 C-MNIST C-CIFAR MNSIT-M ImageNet-R†

Probabilistic
LSCE 82.69± 0.79 99.63± 0.30 52.14±1.76 95.31±1.21 34.44±1.84 95.75±0.36 27.17±0.00 69.63
LBCE 82.63± 0.13 99.75± 0.17 37.38±1.66 93.75±1.67 32.47±4.34 96.56±0.47 2.7±0.00 63.60
LNLL 80.50± 1.97 99.75± 0.34 51.84±0.30 95.81±1.36 35.25±1.79 95.94±0.60 23.91±0.00 69.01

Margin-based
L1 82.00± 0.60 99.35± 0.17 1.73±0.18 95.19±2.64 25.11±1.21 97.56±1.81 1.81±0.33 57.54
L2 84.44± 1.30 99.75± 0.17 38.84±3.41 93.00±0.99 25.34±2.46 97.06±1.87 1.89±0.87 62.97
LSoS 82.12± 1.52 99.63± 0.01 36.13±2.30 95.00±0.63 34.81±1.42 97.44±1.08 2.44±0.81 63.94

Table 3: The table below provides the empirical performance of the individual objective
functions for the generic, bias, and OOD data. The experiments were carried out without
any augmentations and did not use learnt weights (ImageNet1K or ImageNet21K) for the
training models. These experiments were conducted three times for each objective function
for a fair evaluation. The tabulated mean and standard deviation (mean ± std) in each cell
depicts the accuracy scores obtained after experimenting thrice with the ’test’ data. Bold
and underline represent the accuracy scores of first and second best performing models,
respectively.

the theoretical motivation of Janocha et al. [11] that L1 would reduce the sparseness in the
representations. Rather than directly discriminating the representations in the final layer, we
use softmax to ensure appropriate learning without saturation of partial derivatives2. Simi-
lar to L1, we use L2 to find find the Euclidean distance between two representations (final
layer). Lastly, Hui et al. [10] rescaled SoS to be more robust by providing two parameters
α , β . Injection of these parameters resulted in a decent performance for the NLP and ASR
tasks, but was poorly performed on the computer vision tasks. For experimentation, we have
chosen α , β = 1, and this reduces to standard SoS.

3.3 Evaluation
Now, let us understand the empirical performance of these objective functions trained on
all variants of the data detailed in Table 3. For generic data, in most of the cases, LSCE
and LNLL were able to achieve top accuracy scores. But, L2 obtained the highest accuracy
for CIFAR-10 and competed closely with LNLL on MNIST. Taking into account the case of
biased data LNLL performed standalone; LSCE and LSoS were able to compete closely with
LNLL. Surprisingly, L1 turned out to have good performance for MNIST-M, and LSoS was
closely on par. But for ImageNet-R exceptLSCE andLNLL all other objectives failed to obtain
at least 10% accuracy score. Further, the variance in the accuracy is higher for margin-based
objectives compared to that of probabilistic. Hence, aggregating these results, it is strongly
recommended that using probabilistic loss functions (LSCE and LNLL) would obtain decent
performance on most of the data. The empirical performance attained by these objective
functions is well-understood but, the question arises with the internal representations of the
model trained on these data.

4 Representation Analysis
In systems neuroscience, the Representation Similarity Analysis (RSA) framework [17]
was the most successful in understanding the representations acquired from various activity

2Without any non-linear activation it is observed that gradients saturate and halt the learning of neural networks.
The experiments conducted with pure L1 i.e, without any non-linearity led to very poor learning and these have
been experimented and detailed in the supplementary material

Citation
Citation
{Janocha and Czarnecki} 2017

Citation
Citation
{Hui and Belkin} 2021

Citation
Citation
{Kriegeskorte, Mur, and Bandettini} 2008



6 GNYANESH, LALITH, AND KIRAN: REPRESENTATION STRUCTURE OF NN’S
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Figure 1: This figure illustrates CKA visualizations for probabilistic objective functions on
MNIST, C-MNIST, and MNIST-M. The First row, Second row, and Third row describe
the representations acquired by all objectives respectively for all three variants of data sets.
Each tile of the image consists of a color, indicating the strength of representations i.e., the
similarity of each layer representation. This corresponding color map is provided on the
right side of each image tile. For visualizing CKA, we considered all the layers of the neural
network (ResNet18) including activation, normalization, and fully-connected layers. The
matrix is formed by comparing the features acquired by each layer of the ResNet18 with
itself.

patterns in various regions of the brain. In addition, it provides insights into the similarity be-
tween representations by constructing Representation Dissimilarity Matrices (RDMs). With
this motivation a method Centered Kernel Alignment (CKA) was devised to understand the
representation structure of artificial neural networks. It is well established in the literature
that CKA [15] acquires qualitative representations compared to PwCCA [22] and SVCCA
[24]. CKA not only captures the correspondence between the representations of a neural net-
work but also allows us to compute the similarity between pairs of layers. Therefore, three
major interpretations can be made by visualising CKA. Which are

1. Which part of the layers, of a certain neural architecture, constitute similar represen-
tations?

2. Comparing the representations obtained from two diverse neural architectures, and
determine which could be a robust choice for given data.

3. Comparing the internal representations of a certain neural architecture by varying the
data sets, we determine which architecture would be sensitive to a certain data.

To reduce the computational expense consumed by linear CKA, mini-batch CKA is ap-
plied by computing the mean of HSIC (Hilbert-Schmidt Independence Criterion) scores on
selected mini-batches (N). This strategy is implemented straightforwardly as Thao et al.
[23]. The mini-batch CKA is detailed as follows:

CKAmini =
∑

N
i=1 HSICi(X̃i,Ỹi)√

∑
N
i=1 HSICi(X̃i, X̃i)

√
∑

N
i=1 HSICi(Ỹi,Ỹi)

(1)
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where, X̃i = XiXT
i ;Ỹi = YiY T

i . These Xi ∈ Rn×d1 and Yi ∈ Rn×d2 are activation matrices for
ith mini-batch of examples without replacement. We now try to analyse the representations
using CKA for all the objective functions on the aforementioned data in two steps.

4.1 Step-I

The first step aims at addressing which layers correspond to similar representations in a
specific neural network trained on a certain objective function. In the following, we are
going to understand which representations would lead to better outcomes and which do not.
For this, we intend to choose all the objective functions for representation analysis using
CKA. As including all the data sets would be redundant, we have chosen MNIST variants
i.e., choosing a similar type of data set from the variants mentioned in Table 1.

In Figure 1, when considering MNIST data, the CKA representation matrix formed for
LBCE , LNLL and L2 seems to have similar characteristics. While considering the case for
the C-MNIST data set, all the loss functions tend to form a small box-like structure at the
ultimate layers (after 50th layer). But, LNLL,L1, and LSCE seem to have uniformly dis-
tributed representation with decreasing similarity with the depth of the neural network. Fi-
nally, for MNIST-M data the refined representation similarity is obtained for L1,LSCE and
LNLL. However, surprisingly, the performance for MNIST-M is higher for margin-based
objectives. Considering the case of LSoS objective, it is prone to have block structured rep-
resentations on utmost all the data [23]. This structured block resembles the neural network
as overparameterised model. The underlying reason is either that the model has fewer data
samples or a deeper network. This can be surmounted by truncating the layers with identical
representational similarity.

These indications are clear to note that, the objectives LSCE and LNLL not only provide
decent empirical performance but capture fine representations with ResNets. Hence, it is
understood that the representations acquired by probabilistic objectives are comparatively
better to provide good generalisations for diverse data sets.
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Figure 2: The figure visualizes the CKA plots for C-MNIST and MNIST-M on ResNet18
with and without ImageNet1k pre-trained weights. All these visualizations were obtained by
training the model with LSCE as objective.
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4.2 Step-II

Following this, a new question arises. How similar are the representations that initialise
the training with pre-trained weights (e.g. ImageNet1k) on the considered data sets? How
similar are the representations of neural networks trained on biased data versus OOD data?
Can we transfer neural architecture weights trained on biased data sets to solve the problem
of distribution shifts and vice versa?

PPPPPPPPTest
Train pre-trained: ImageNet1k pre-trained: None

C-MNIST MNIST-M C-MNIST MNIST-M
C-MNIST 95.69±0.78 97.62 ±0.26 95.34 ±1.48 13.87 ±2.41
M-MNIST 52.40 ±3.72 98.03 ±0.56 11.45 ±0.09 95.83 ±0.55

(a) C-MNIST vs MNIST-M on LSCE

PPPPPPPPTest
Train pre-trained: ImageNet1k pre-trained: None

CIFAR-10 C-CIFAR CIFAR-10 C-CIFAR
CIFAR-10 90.19±0.55 22.85 ±2.47 82.71 ±0.97 15.62 ±2.40
C-CIFAR 24.66 ±2.13 38.72 ±3.07 24.45 ±2.54 34.42 ±2.24

(b) CIFAR-10 vs C-CIFAR on LSCE

PPPPPPPPTest
Train pre-trained: ImageNet1k pre-trained: None

C-MNIST MNIST-M C-MNIST MNIST-M
C-MNIST 96.80 ±0.76 96.01 ±1.57 95.82 ±1.65 12.64 ±0.53
M-MNIST 50.41 ±5.58 98.28 ±0.55 11.61 ±0.26 95.95 ±0.73

(c) C-MNIST vs MNIST-M on LNLL

PPPPPPPPTest
Train pre-trained: ImageNet1k pre-trained: None

CIFAR-10 C-CIFAR CIFAR-10 C-CIFAR
CIFAR-10 91.29±1.17 18.35 ±1.91 80.50 ±2.41 15.31 ±3.07
C-CIFAR 28.94 ±5.67 38.35 ±4.38 23.47 ±7.35 34.92 ±1.94

(d) CIFAR-10 vs C-CIFAR on LNLL

Table 4: These tables illustrate the performance of ResNets for both in-data and cross-data
generalization. All the results depicted in the table are test results that were experimented
thrice and the obtained the mean and standard deviation of test accuracy scores are noted.
The ’Train’ and ’Test’ technically mean that data were trained on the mentioned dataset and
the accuracy scores were obtained on the test datasets. We consider both the cases of training
ResNets with and without pre-trained weights and as a note, ImageNet1k weights are used
as pre-trained weights.

To address these questions, we first perform an empirical analysis on objectives LSCE
and LNLL. Now, we consider two combinations of data sets. From Table 4 (a) and Table 4 (c)
we infer that in the presence of ImageNet1k weights the ResNet trained on C-MNIST and
tested on M-MNIST provides half transferable performance (≈ 50%) but, the accuracy drops
if C-MNIST is trained from scratch. In the same line, the presence of ImageNet1k weights
the ResNet trained on M-MNIST shows maximum transferability (> 95%) and the accuracy
diminishes if trained from scratch. But is counterintuitive for the combination of CIFAR-
10 and C-CIFAR. It can be observed that, even with ImageNet1k weights, the transferable
performance is minimal. Especially, when trained on CIFAR-10 and tested on C-CIFAR
the transferable performance of LSCE is small-scale (< 1%). Hence, there is no guarantee to
attain greater performance on biased data and data with distribution shifts for standard neural
networks by initializing the training with pre-trained weights (e.g. ImageNet1k).

Now we compare and contrast the representational structure of the neural networks hav-
ing initialised with pre-trained weights and those that are trained totally from scratch (with-
out any augmentations). In Figure 2 we examine that when the network is trained and tested
on the same data (that is, ResNet18 trained on MNIST-M and tested on its test set), the
representations are refined and similarity decreases as the network progress with depth. If
you consider the case of cross-data generalisation, the neural network with a uniform pro-
gression of decrease in similarity is highly likely to perform well. E.g. Consider the case of
ResNet trained on C-MNIST and evaluated on MNIST-M. The resulting performance was
superior only when the C-MNIST training was initialised with ImageNet1k weights. In this
case, when ResNet is trained from scratch, it has poor performance, and this is reflected
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in the CKA representation matrix. As most of the layers tend to be the same, the ResNet
(trained on C-MNIST) could not generalize well for the given new set of samples (tested on
MNIST-M). So, if the neural network generalises well or provides good transferability, its
performance can be assessed by visualising CKA and comprehending that the concentration
of representational similarity progressively decreases with the depth of the network.

5 Conclusion

By summarising the above, we infer that LSCE and LNLL objectives would be apt for most of
the data sets (inclusive of Biased and OOD). But while experimenting, it should be noted that
the variance in accuracy must be minimalist to ensure robustness. Secondly, if neural net-
works are initialised with pre-trained weights there is no guarantee for superior performance
on biased and OOD data. Finally, if the neural networks are exposed to cross-data, gener-
alisation is attained only when the layers of CKA matrices have a progressive dissimilarity
with the depth of the network.

In the future, we see the potential requirement of data sets comprising samples with dis-
tribution shifts with a greater sample size as of ImageNet. Likewise, the representations
acquired by the models are to be ensured with the least bias possible. We believe that, com-
prehending the representations acquired from biased data would aid researchers in providing
a novel debiasing neural network or a bias mitigation strategy. Also we believe that, this
CKA framework can be extended to study the detailed intrepretability of the neural networks
[12]

6 Broader Impact

Since scientists and analysts routinely conclude, albeit based on evidence-based insights,
OOD and biased data can be inherently misleading. The impact of such misinterpretation
can be corrected through exposure, experience, and expertise when humans are involved in
the interpretation. However, if the data itself is OOD or biased or only the interpretations
of the data were presented by researchers, the danger of unconscious or even conscious
biases cannot be ruled out entirely. While Smith’s book [26] is an elaborate example of
how research methodologies are inherently designed with ignorance towards the subjects of
study, subtler cases of bias can be innate to the ways data are sourced, stored, pre-processed,
analyzed, and interpreted.

The current work emphasises the need to methodically improve the quality of OOD rep-
resentation and biased data without proposing radical paradigm shifts in current methodolo-
gies. This work does not organically provide scope for misinterpretation of data or biased
decisions made through data analytics. Furthermore, the work facilitates a better and more
uniform representation of the data by reminding researchers to consciously consider the bi-
ases and OOD aspects of the data, which may be rather inconspicuous. A stronger motivation
arises as Artificial Intelligence and Machine Learning continue to be used in various tech-
nology and social domains for diverse applications.
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