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Abstract

Recently, Adversarial Propagation (AdvProp) improves the standard accuracy of a trained
model on clean samples. However, the training speed of AdvProp is much slower than vanilla
training. Also, we argue that the use of adversarial samples in AdvProp is too drastic for robust
feature learning of clean samples. This paper presents Mixup Propagation (MixProp) to further
increase the standard accuracy on clean samples and reduce the training cost of AdvProp. The
key idea of MixProp is to use mixup to generate samples for the auxiliary batch normalisation
layer. This approach provides a moderate dataset as compared with adversarial samples and saves
the time used for adversarial sample generation. The experimental results obtained on several
datasets demonstrate the merits and superiority of the proposed method.

1 Introduction

In recent years, Deep Neural Networks (DNNs) have demonstrated great success in many computer
vision tasks [7, 13, 16]. However, a well-trained model could be vulnerable to adversarial attacks that
aim to fool the model by adding imperceptible perturbations [30]. These attackers try to bypass or
directly attack a target model thus achieving confrontation purposes, leading a trained DNN to change
its prediction of a given image completely. To deal with this challenge, many countermeasures have
been proposed to detect or defend against adversarial attacks. For instance, Samangouei et al. [27]
proposed a method using Generative Adversarial Networks (GANS) [5] to deal with adversarial attacks.
A contrastive-learning-based mechanism was proposed by Jiang et al. [11] to create label-efficient
and robust models against adversarial attacks. Xie et al. [33] introduced a feature denoising method
that uses non-local means and other filters to improve the adversarial robustness of deep networks.
As one of the most popular defence methods, adversarial training [14, 19] directly uses augmented
adversarial samples to enhance the robustness of a trained deep network.

In spite of its success, the use of adversarial training is not without difficulties. Adversarial training
improves the robust accuracy of the trained model on adversarial samples but also reduces its standard
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Figure 1: A comparison between AdvProp and MixProp. AdvProp generates adversarial samples
for each clean image during the training stage using PGD attacks. However, MixProp uses the mixup
of two clean images as the input for the auxiliary BN layers, resulting in efficient network training.

accuracy on clean samples. This is the well-known ‘trade-off” problem. Many existing studies found
that adversarial training may significantly hurt the generalisation of a model and reduce its standard
accuracy [31, 37]. It is extremely difficult to train a model that performs well on both clean and
adversarial samples. For this reason, the more noise generated by adversarial attacks ‘pollutes’ the
adversarial training process, the less generalisation capability on clean samples achieves [39].
Instead of improving the robust accuracy of a deep model on adversarial samples, recent studies
find that the use of adversarial samples can also improve the generalisation capability and standard
accuracy of a trained DNN on clean samples. For example, Adversarial Propagation (AdvProp) [34]
manages to achieve the above goals by using two Batch Normalisation (BN) layers, namely main and
auxiliary BN, to process clean and adversarial samples, respectively. As shown in Fig. 1, AdvProp
uses all the clean samples to calculate the statistics of the main BN layer, and only uses the adversarial
samples for the auxiliary BN layer. On the one hand, the adversarial samples used in AdvProp
enhance diverse and robust feature learning for performance boosting on clean data. On the other
hand, the use of two BN layers maintains the cleanness of the statistics stored in the main BN layer.
However, the existing AdvProp paradigm has two major issues. First, it requires much more
computational resources than vanilla training as the adversarial samples have to be generated on-the-fly.
More importantly, we argue that the use of adversarial samples might be too drastic for representation
learning even though the auxiliary BN layer mitigates their impact to some extent. To address the above
issues, this paper advocates Mixup Propagation (MixProp), which further boosts the performance
in standard accuracy and reduces the training cost as compared with AdvProp. Fig. 1 illustrates the
design of the proposed MixProp method. Instead of using adversarial samples, the proposed MixProp
method synthesises new training samples via Mixup [38], a common data augmentation method that
combines two images and their labels with linear interpolation. In MixProp, the main and auxiliary
BN layers process clean and mixup samples, respectively. We also introduce a mixup loss function
for further performance boosting. Our MixProp framework has the following advantages:
¢ The training cost of MixProp is significantly reduced compared with AdvProp. AdvProp has to
generate adversarial perturbations via a very complicated generation network that is computationally
expensive. By contrast, the mixup of two images is computationally very efficient.
* MixProp outperforms AdvProp on both clean images and distorted images without retraining. This
demonstrates the robust feature learning capability of the proposed method against various types
of image degradation.

2 Related work

Adversarial samples have become a major threat to DNNs since they were discovered. They can
fool a trained network and intentionally cause wrong prediction results. There are many types of
adversarial attacks in computer vision. For example, unlike a unique perturbation for each image,
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different images could share an identical perturbation to fool a classifier. We call such perturbations
as Universal Adversarial Perturbations (UAPs) [24]. Some studies explored approaches that try to
generate the smallest perturbations, increasing the difficulty of being identified [23]. Under extreme
conditions, only one pixel can be attacked to fool a classifier [29]. Researchers have also found
that adversarial samples may exist in the real world [15], causing malfunctions in a trained network
through physical image or video capturing.

To defend against adversarial attacks, the most widely used method is adversarial training [14, 20].
The key idea of adversarial training is simple and straightforward. It includes the adversarial samples
generated by an attack method in the training stage of the network. By this means, the trained model
learns the features of the adversarial samples and improves its robustness against adversarial attacks.
However, this takes much more time than vanilla training.

Most of the existing adversarial training methods focus on improving the performance (robust
accuracy) of a trained model on adversarial samples [2, 6, 20]. However, these approaches may
decrease the standard accuracy of the trained model on clean samples [12, 14, 33]. When the robust
accuracy goes up, the standard accuracy usually goes down. Maini et al. [21] developed a model that
is robust to multiple adversarial attack methods, which naturally incorporates different gradient-based
perturbation models into a single unified adversary to find the worst-case loss. Wang et al. [32]
proposed an adversarial training method to adjust the trade-off between standard and robust accuracy
at the inference stage. This method does not require retraining the network many times to tune the
standard or robust accuracy. It builds on the model-conditional adversarial training framework and
uses a balancing hyper-parameter as an input. Therefore, the user could modify standard and robust
accuracy by adjusting the balancing hyper-parameter. This approach saves a lot of time, but the
upper limits of standard and robust accuracy are not increased. Liu and Jin [18] advocated neural
architecture search and found that the searched network can improve both the standard accuracy and
robust accuracy. In addition, this method could defend against multiple attacks.

Lin et al. [17] proposed filter pruning using GAN, but the training of the GAN model is difficult
to converge. Cui et al. [3] tried to leverage the clean model to improve the standard accuracy of the
adversarial training model. They expected the logit output of an adversarial sample on a robust model
to be similar to the logit output of a corresponding clean image on a clean model. By design, the
clean model could help the robust model classify the clean images into ground-truth classes. But
the standard accuracy still drops a bit by using this approach.

Instead of the promising robust accuracy results achieved by the existing adversarial training
methods, many recent studies also tried to improve the standard accuracy of DNNs via the adversarial
learning paradigm. For example, Ho and Nvasconcelos [10] proposed contrastive learning with
adversarial learning, which uses adversarial samples to maximise the diversity of the pairs, enabling
contrastive learning to achieve better performance. Xie et al. [34] introduced Adversarial Propagation
(AdvProp) that processes clean and adversarial samples separately by using paralleled Batch Normal-
isation (BN) layers. The dual-BN design could disentangle the distributions of clean and adversarial
samples. But AdvProp suffers from low training speed. Mei et al. [22] managed to accelerate the
training of AdvProp by reducing adversarial attack iterations and decoupling clean and adversarial
image pairs. The final training budget is reduced to the level of vanilla training.

3 The Proposed MixProp Method

3.1 Problem Statement and Analysis of AdvProp

As aforementioned, many existing adversarial training methods [28, 31, 32, 36] have a trade-off
issue. It is usually difficult for a model to perform well on both clean and adversarial samples. Our
assumption about this trade-off issue is that the standard training and adversarial training of a network
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may have conflicting objectives. Adversarial samples add noise to the original clean data, shifting the
data distribution. However, it is well-known that the feature learning of a deep network relies heavily
on the distribution of the training data. By injecting adversarial samples into a clean dataset, it shifts
the feature learning results of the trained network significantly, resulting in performance degradation
of the model on the clean dataset.

Adversarial Propagation (AdvProp) [34] aims to improve the generalisation capability of a trained
deep network on clean samples via the adversarial training paradigm. To address the data distribution
shift problem, AdvProp uses two BN layers in parallel for network training. The main BN layers
process clean samples and the auxiliary BN layers process adversarial samples, respectively. During
the training process of AdvProp, the adversarial samples boost the performance in standard accuracy
by enhancing the feature diversity and robustness, and the dual-BN design maintains the statistics
of the clean dataset stored in the main BN layers, alleviating the distribution shift problem. AdvProp
has demonstrated promising performance not only on the image classification task but also on many
other tasks, such as object detection and contrastive learning [1, 10].

One major disadvantage of AdvProp is that its training cost is much higher than vanilla training. The
main reason is that AdvProp generates adversarial samples by Projected Gradient Descent (PGD) [20]
on-the-fly during the network training stage. AdvProp requires 7 times more forward and backward
passes than vanilla training when using PGD-5 [22]. This heavy training cost limits its application to
more complicated tasks and larger datasets. The other disadvantage of AdvProp is that the adversarial
samples generated by PGD-1 still disturb the standard accuracy. In this paper, we further boost the
performance of AdvProp by proposing MixProp which also reduces the training budget significantly.

3.2 MixProp
3.2.1 Data Moderation

As aforementioned, one major issue of AdvProp is that the use of adversarial samples is too drastic and
may disturb the feature learning on the clean data. The aim of adversarial attacks is to fool a trained
network so the online-generated adversarial samples may shift the features of a sample significantly
from the original feature embedding. In this case, the adversarial samples may contain features that
do not belong to the clean data domain. Although AdvProp uses a dual-BN architecture for clean and
adversarial samples, the adversarial samples still affect the learning of other layers of a network during
the feed-forward and back-propagation stages, leading to potential standard accuracy degradation.
Therefore, we advocate the use of diverse but moderated samples instead of adversarial samples.

To achieve the above goal, we propose Mixup Propagation (MixProp) that synthesises a new
dataset via Mixup [38]. To be specific, MixProp uses the mixup of two arbitrary clean samples to
generate a new sample instead of generating online adversarial samples in AdvProp. In MixProp, we
also use two BN layers in each block, i.e., one BN layer for clean samples and one BN layer for mixup
samples. The use of mixup generates samples that are closer to the clean domain and expands the
diversity of the clean dataset. The auxiliary BN layer processes mixup samples, allowing the model to
learn more clean sample features and improve its standard accuracy. Note that only the main BN layer
is used during the inference stage when testing the performance of MixProp in standard accuracy.

The second problem of AdvProp is the high training cost. Fast AdvProp [22] utilises several tricks
to reduce the training cost, including reusing unpaired adversarial samples, reducing adversarial attack
iterations and recycling gradients. But Fast AdvProp does not further improve the standard accuracy
as compared with AdvProp. In contrast, the proposed MixProp method uses mixup samples that
can be generated very efficiently as compared with AdvProp, reducing the training cost significantly.
Also, our MixProp further improves the performance in standard accuracy as compared with AdvProp
and Fast AdvProp, demonstrating its advantages in terms of both accuracy and efficiency.
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Figure 2: A comparison of the objects in CIFAR-100 and ImageNet-100. An image in ImageNet-100
may contain several objects and the labelled object may only occupy a small part of the whole image.

3.2.2 Attentive Representation Learning

Most adversarial attacks perturb all the pixels in an image, but only some key feature regions are critical
to the final decision making [25]. Adversarial perturbations may attract a classifier’s attention to some
key parts of the target region rather than the background or non-target objects. As shown in [34],
the top-1 accuracy of AdvProp obtained on ImageNet and distorted datasets is much better than the
results obtained by vanilla training. However, in our evaluation results, the top-1 accuracy of AdvProp
is worse than vanilla training when evaluated on the CIFAR-100 dataset, as shown in Table 1. The
main difference between CIFAR-100 and ImageNet, except for their resolution, is that an ImageNet
image may contain multiple objects and the labelled object may only occupy a small part of the whole
image. As demonstrated in Fig. 2, the target object in CIFAR-100 is always in the centre of the image
and almost occupies the whole image. We believe the distractions in ImageNet could potentially
degrade the performance of a trained network. The use of adversarial perturbations could guide the
classifier’s attention to the target region when processing samples with a lot of extra background
information. This is the main reason why AdvProp performs better than vanilla training on ImageNet.
Note that, the proposed MixProp method has a similar advantage in attentive representation learning.
This has also been verified in many existing studies. For example, the experimental results of weakly
supervised object localisation in CutMix [35] demonstrate that mixup obtains tighter bounding boxes
than those obtained by the baseline method. According to our experimental results in Sec. 4.4, MixProp
could guide the feature learning of the trained classifier concentrated on the target in an image.

3.2.3 Loss Function and Network Training

We train the proposed framework in a multi-task optimisation manner. The overall loss function is
defined as:

Losszﬁc(eaycvypredc)+;L*Em(97yaaypred,,z)+(1 _/’L)*‘Cm(eayhvypredm)’ (1)
where L, is the cross-entropy loss on clean samples; £, is the cross-entropy loss on mixup samples;
A ~ Beta(a, o) is the mixing coefficient and Beta() is the Beta distribution; y,, y, and y, are the
ground-truth labels of the clean image and two clean images used for mixup, respectively. y,,.
and y,,,.q, represent the predicted labels of the clean and mixup samples.

As shown in Fig. 1, for each batch of samples, we apply mixup to them and generate mixup
samples for the auxiliary BN layer. This procedure takes a copy of the original batch of samples
and randomly mixes two arbitrary samples. Then the auxiliary BN layer calculates the statistics of
the mixup batch. Meanwhile, the main BN layer just processes the original batch that includes clean
samples only. Note that all the layers, except the two BN layers, are optimised jointly with both the
clean and mixup samples. After network training, we discard the auxiliary BN layer and only use
the main BN layer for image classification.
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Table 1: Top-1 accuracy of Preact-ResNet on CIFAR-100
Architecture | Vanilla Mixup AdvProp MixProp
Preact-18 75.68 7154 75.06 78.05
Preact-50 77.08  78.62 76.7 79.74

Table 2: Top-1 accuracy of ResNet on ImageNet-100
Architecture | Vanilla Mixup AdvProp MixProp
ResNet-18 834 84.1 83.76 84.58
ResNet-50 | 84.84  84.92 86.18 85.64

4 Experimental Results

4.1 Implementation Details

Datasets. We train and evaluate our models on CIFAR-100 and ImageNet-100. CIFAR-100 consists
of 60000 32x32 colour images of 100 classes. ImageNet-100 is a subset of ImageNet [26] with 100
classes and the other specifications are the same as ImageNet. We also use ImageNet-100-C and
Stylized-ImageNet-100 to evaluate the performance of a trained network on distorted images. These
two datasets are extracted from ImageNet-C and Stylized-ImageNet. ImageNet-C [9] measures the
robustness of a model on 15 diverse corruptions with five severity levels each. The Stylized-ImageNet
dataset [4] uses AdalN style transfer to distort the local textures of an image and retain the global
object shapes. The Stylized-ImageNet dataset makes a model to learn more about shapes and less
about local textures. Both ImageNet-C and Stylized-ImageNet have 50 images in each class in their
validation sets. We reform ImageNet-C and Stylized-ImageNet from 1000 classes to the corresponding
100 classes of the ImageNet-100 dataset and get ImageNet-100-C and Stylized-ImageNet-100.

Experimental Settings. We use Pre-Activation ResNet-18/50 [8] and ResNet-18/50 [7] as the
backbone networks. The Pre-Activation ResNet is specially designed for a dataset with very low
resolutions, such as CIFAR-100. The use of two different ResNet models can help us understand
whether the model size can affect the standard accuracy significantly or not. For ImageNet-100, we
use the SGD optimiser with a momentum of 0.9 and weight decay of 5e-4. We train each model
for 270 epochs. The learning rate starts at 0.1 and decays by a factor of 0.1 at the 90th, 180th, and
220th epochs. For CIFAR-100, we change training epochs to 320, and decay at the 100th, 180th, and
260 epochs. The batch size is set to 128. We use random crop and random flip for data augmentation.
For the coefficient of mixup, we randomly sample A from the Beta(1,1) distribution for each batch.

AdvProp settings. We use Projected Gradient Descent (PGD) [20] as the attacker to generate
adversarial samples on-the-fly for AdvProp. We set the perturbation size € range from 1 to 3. The
number of iterations for the attacker is set to n=¢€4-1. Note that when € =1, n is still 1. We also
fix the attack step size to o= 1. Other settings are the same as AdvProp.

4.2 Comparison between AdvProp and MixProp

Table 1 reports the top-1 accuracy of Preact-ResNet-18 and Preact-ResNet-50 obtained on the
CIFAR-100 validation set with different methods. We choose PGD-1 and PGD-4 for AdvProp trained
with Preact-ResNet-18 and Preact-ResNet-50, respectively, because they have the best performance.
The baseline method is “Vanilla® training that uses a single set of BN layers, which achieves 75.68%
top-1 accuracy on CIFAR-100.

In addition to the vanilla training, we also evaluate the single use of mixup. For the ‘Mixup’ method,
we apply mixup to half of the clean samples in each batch under a single set of BN layers. We can see
that Mixup further improves the accuracy to 77.54% by replacing 50% of original training samples with
mixup samples. This result validates the effectiveness of mixup in deep network training. According
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Table 3: The evaluation results obtained on distorted datasets. For ImageNet-100-C, we use the
mean Corruption Error (mCE) metric. For Stylized-ImageNet-100, we use the top-1 accuracy.

Architecture ImageNet-100-C | Imazgll\lll:scllbo 4
ResNet-18 Vanilla 66.7 18.9
ResNet-18 Mixup 59.1 23.7

ResNet-18 AdvProp (main BN) 614 21.8
ResNet-18 MixProp (main BN) 59.2 23.8
ResNet-18 AdvProp (aux BN) 65.7 22.2
ResNet-18 MixProp (aux BN) 58.6 25.8
ResNet-50 Vanilla 61.8 21.0
ResNet-50 Mixup 56.8 26.0
ResNet-50 AdvProp (main BN) 54.0 27.0
ResNet-50 MixProp (main BN) 56.8 24.8
ResNet-50 AdvProp (aux BN) 62.3 26.1
ResNet-50 MixProp (aux BN) 54.4 29.5

to the table, we can also find that the use of a more powerful network, Preact-ResNet-50, can achieve
better performance when we use the vanilla training method. Preact ResNet-50 achieves 77.08%
and 78.62% in terms of the top-1 accuracy when we use vanilla training and Mixup, respectively.

Surprisingly, the top-1 accuracy of AdvProp is lower than that of the vanilla training method,
which is against the conclusion obtained by AdvProp [34]. In contrast, the proposed MixProp method
outperforms all the other approaches significantly, regardless of the network architecture.

Table 2 reports the performance of different methods in terms of the top-1 accuracy on ImageNet-
100 using two network architectures, i.e., ResNet-18 and ResNet-50. Again, Mixup outperforms
the vanilla training method. Differently, AdvProp achieves higher top-1 accuracy than vanilla training.
However, when we use the ResNet-18 network, AdvProp performs slightly worse than the mixup
method. In contrast, MixProp outperforms both vanilla and mixup, regardless of the use of different
networks. This demonstrates the robustness of the proposed method in terms of network architecture.

The results obtained on CIFAR-100 and ImageNet-100 validate our argument in Sec. 3.2.2. The
adversarial perturbations used in AdvProp not only provide additional training samples but also
help attentive feature learning. That is why AdvProp does not work well on CIFAR-100, since the
images in CIFAR-100 are already well-cropped. Adversarial attacks cannot improve the attention
of a classifier, and perturbations further hurt the generalisation ability of a trained model. Instead,
MixProp uses a mixture of clean images, which are harmless to model generalisation.

4.3 Performance on Distorted Images

We also evaluate the performance of the proposed method on distorted images. To this aim, we train
different methods on ImageNet-100 and test them on ImageNet-100-C and Stylized-ImageNet-100.
For AdvProp and our MixProp, we only use the main BN layers after network training. The
experimental results are reported in Table 3. We can see that the proposed MixProp (main BN)
method significantly outperforms the vanilla baseline on both distorted datasets when using two
different backbones. The improvement is more remarkable than that on the clean datasets. As we can
see, MixProp improves mCE by 7.5% on ImageNet-100-C and top-1 accuracy by 4.92% on Stylized-
ImageNet-100. Note that these results are obtained when models are not trained with distorted images.

However, MixProp does not always outperform AdvProp (main BN). AdvProp achieves better
results on both ImageNet-100-C and Stylized-ImageNet-100 when using ResNet-50. The main reason
is that we use mixup samples for the proposed method, which are moderated samples as compared
with the adversarial samples in AdvProp. When we use the main BN layers for evaluation, AdvProp
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Table 4: A comparison in the training budgets of one epoch.

Perturbation | Vanilla Mixup MixProp AdvProp
PGD-1(e=1) 3N
PGD-3(e=2) IN IN 2N 5N
PGD-4(e=3) 6N

Table 5: Actual training time (second) of one epoch on ImageNet-100 using ResNet-18.
Vanilla Mixup MixProp AdvProp(PGD-1)
163s 165s 198s 285s

could perform better than MixProp, especially for a large-capacity network.

4.4 Ablation study

The use of auxiliary BN layers. In AdvProp, only the main BN layers are kept for testing because
there is not any ‘real’ adversarial sample in the test set. The auxiliary BN layers, containing adversarial
sample statistics, will not work well on these datasets. The auxiliary BN layers of our method, on the
other hand, do not use adversarial samples, but process the mixup of clean samples. The distribution
shift between clean and synthesised images is smaller than that between clean and adversarial samples.
We can regard the process in the auxiliary BN layers as a kind of ‘robustness training’ within the
clean data distribution. This adjustment makes the auxiliary BN layers capable of being used for
robustness evaluation during testing.

In Table 3, the proposed MixProp (aux BN) method archives better performance. The trained model
with ResNet-18 improves the performance of the baseline method by 8.1% in mCE and 6.9% in top-1
accuracy on ImageNet-100-C and Stylized-ImageNet-100, respectively. AdvProp has worse perfor-
mance when using auxiliary BN layers, which is consistent with the results reported in the paper [34].

A comparison in the training budget. AdvProp requires more training cost than vanilla training
because AdvProp needs to generate adversarial samples during the training stage. We compare the
training cost of our method with AdvProp following the method used in [22], which denotes the
cost of a single forward and backward pass for one image as 1 for simplification and sets the dataset
size to N. So, the cost of vanilla training is N for one training epoch. We report the total training
cost of different methods in Table 4. Our method, MixProp, only requires 1/3 to 2/3 of the AdvProp
training cost, depending on the attack iteration.

We also test the actual time used by different methods for one epoch, using a single NVIDIA GTX
3090 card. We set the hyper-parameters the same as in Sec. 4.1. Table 5 presents the actual training
time of one epoch on ImageNet-100 using ResNet-18. MixProp takes 21% more time than vanilla
training. In contrast, AdvProp with PGD-1 takes 75% more time than vanilla training.

Attentive representation learning. We apply Class Activation Mapping (CAM) [40] to visualise
the spatial attentive areas of the classifiers trained with vanilla, AdvProp and MixProp methods.
We use ResNet-18 for visualisation. CAM highlights the regions that are discriminative to predict
the class by a trained network. As shown in Fig. 3 (a), we can see that the focus region obtained
by MixProp is much smaller than that of vanilla and AdvProp when only MixProp has the correct
prediction on the left side. Although the dark red region, which we denote as the activation region,
is similar between vanilla and MixProp, vanilla has a much wider focus region. AdvProp surprisingly
has three focus regions, leading to a wrong prediction.

The performance of MixProp is still the best when all three methods predict correct labels, as
shown on the right side of Fig. 3 (a). AdvProp does not make the activation region on the target
but concentrates on the fishnet. Despite the fact that both vanilla and MixProp have more precise
activation regions, vanilla has more activation regions which split its attention. In contrast, MixProp
puts more attention on the target area and gets a higher confidence score.
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(a) Clean Images (b) Distorted Images
Figure 3: Visualisation of attentive heatmaps achieved by different methods, using Class Activation
Mapping (CAM) [40], on (a) clean images and (b) distorted images. In (a), we show the heatmaps
obtained on the ‘indigo bird” and ‘tench’ images. In (b), we show the heatmaps obtained on two ‘tench’
images of ImageNet-100-C. Each row represents the original images and heatmaps obtained by vanilla,
AdvProp and MixProp methods, respectively. The labels and confidence scores are also provided.
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We also visualise the results obtained on distorted images of ImageNet-100-C. Vanilla has the
smallest activation region when all three methods correctly predict the labels under level three fog
distortion on the left side of Fig. 3 (b). However, the fog distortion could make vanilla and AdvProp
confused about the location of the target. The activation region of vanilla and AdvProp is away from
the target area, focusing on other background objects. MixProp is affected by fog too, but it expands
its activation region to get a better sense field. MixProp has the largest activation region but it covers
most part of the target area, resulting in the highest confidence score.

The images on the right side of Fig. 3 (b) are affected by level three glass distortion. This time both
vanilla and AdvProp misclassify ‘tench’ to ‘wombat’ and ‘sea slug’, respectively. And all the activation
regions are misplaced. MixProp achieves a more focused attention region that covers the target area.

Based on our observation, MixProp is able to focus on the target area more precisely. The CAM
visualisations validate our statement in Sec. 3.2.2: mixup samples guide the training of a classifier to
concentrate on more discriminative features. The improvement is more significant when encountering
distorted images. We believe that the mixup process in the auxiliary BN layers guides the parameters
in other layers to correctly learn the discriminative features, therefore increasing standard accuracy.
At the same time, mixup prevents the model from over-fitting by introducing more possible features.
And we can use either the main or auxiliary BN layers for better standard accuracy or robust accuracy.

5 Conclusion

In this paper, we proposed a novel method, called MixProp, that uses a dual-BN architecture for
boosting the performance of an image classifier. The proposed method not only boosts the standard
accuracy and robustness of the trained model but also reduces the training cost. The proposed method
uses the mixup of clean samples to synthesise more comprehensive training samples that are closer to
the clean sample distribution than adversarial samples. The synthesised dataset then brings the model’s
focus to the target area and provides rich and diverse features for better generalisation capability. The
proposed method achieves better performance than AdvProp across different datasets without any
extra data. However, the choice of the main and auxiliary BN layers during the inference stage is
manually chosen in the proposed method. We aim to further address this issue in the future so the
BN layers can be adaptively selected for a test sample to achieve good performance on both clean
and distorted/adversarial samples.
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