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Abstract

The fundamental aim of Content-Based Image Retrieval (CBIR) is to find related im-
ages from a candidate image database based on a query image. Recent work exploits
re-ranking ideas, which firstly retrieve candidate images via similarity retrieval using
global image features and then re-rank the candidates by leveraging their local features.
However, the results of re-ranking are very dependent on the effectiveness of newly ac-
quired local feature information, and the global features and local features from the same
model may focus on the same area, resulting in insignificant changes after re-ranking.

We aim to obtain more effective information to improve the efficiency of re-ranking.
We propose a novel re-ranking method, image retrieval method based on two models
re-ranking (IRM2R), which allows using of the information in the initial retrieval of the
two models to adjust one of the retrieval result sets. The experimental results show
that the recall rate (Recall@1) of the image retrieval task is respectively improved by
3.8%, 2.3%, 2.2%, and 0.5% On the four datasets of Cub200, Cars196, Sop, and InShop.
IRM2R can effectively improve the accuracy of image retrieval.

1 Introduction
It becomes very challenging for users to retrieve large-scale images due to the exponential
growth of image data. Therefore, content-based image retrieval (CBIR)[5, 7] becomes par-
ticularly important. CBIR aims to retrieve images similar to the input image from a database.
Currently, remarkable progress has been made in this field, benefiting many intelligent tasks,
including face, clothing, commodity, biological, and medical image retrieval.

For this task, it is effective to re-ranking the initial retrieval results with the newly ac-
quired information. In particular, several studies [6, 21, 22, 26] optimize the embedding
space by extracting global features to complete the initial retrieval, and then using local
features to re-ranking the initial retrieval results to obtain the final retrieval results. These
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methods usually include two primary components: extracting global features and extract-
ing local features. The global features extract the most abstract information in the image to
achieve fast retrieval, and the local features perform spatial geometry matching and perform
re-ranking of potential candidate images to improve retrieval precision. Re-ranking methods
rely on newly acquired local feature information to optimize initial retrieval results. Re-
ranking methods rely on newly acquired local feature information to optimize preliminary
retrieval results. However, both global features and local features are extracted by the same
model, which may focus on the same area, resulting in poor results after re-ranking.

Aiming to address the above-mentioned issues in re-rank based on local features, we pro-
pose a novel re-ranking method for image retrieval method based on two models re-ranking
(IRM2R), which directly leverages two models for the retrieval results from the informa-
tion of query images to optimize the initial retrieval results of one of the models. Firstly,
we choose two models respectively to extract high-dimensional features of the image, and
it is converted into a low-dimensional binary hash code by principal component analysis
(PCA) [8] and iterative quantization (ITQ) [1]. Secondly, constructing two preliminary re-
trieval result sets by first calculating the Hamming distance and then calculating the Eu-
clidean distance. Finally, IRM2R leverages the information of two different retrieval result
sets to adjust one of the retrieval result sets to obtain the final retrieval results. In the recall
rate (Recall@1), IRM2R surpasses two models by 3.8%, 2.3%, 2.2%, and 0.5% on the four
datasets of Cub200, Cars196, Sop, and InShop, by proposing the re-ranking rules module,
and significant performance gain can be obtained.

2 Related Work
Image retrieval based on re-ranking. Early works [3, 18, 19] have designed local features,
which were used for global retrieval and re-ranking. Owing to the development of deep
learning technologies, great progress has been achieved recently in [2, 4, 6, 12, 16, 24, 26],
which directly extract image descriptors from CNNs to encode images and measure their
similarity. In particular, several studies [6, 12, 21, 22, 26] optimized the embedding space
by extracting global features to complete the initial retrieval and then using local features to
re-ranking the initial retrieval results to obtain the final retrieval results. Re-ranking-based
methods have two assumptions, i) the re-ranking retrieval results should not change much
from the initial results; ii) visually similar samples should be close to each other after re-
ranking. Therefore, it is challenging to extract correct and valid information for re-ranking
faces great challenges. Cao et al. [6] leveraged learning global and local feature vectors using
the same model, eliminating certain nearest neighbors using the global feature vector, and
then rearranging these candidate images using the local feature vectors. Oriane Simeoni et
al. [21] proposed a method of deep spatial matching (DSM) that leverages maximum Stable
Extreme Region (MSER) [14] to extracts the regions with a high activation rate of image
features as local features, which completes the re-ranking of preliminary results through
feature matching. By taking global and local feature vectors for image pairs as the similarity
between predicted images, it only needs to use fewer local features. Tan et al. [22] proposed
Reranking Transformers (RRT) which is an image retrieval system at the instance level and
an operation that exploits geometric verification of local features. It can predict the similarity
of image pairs based on their global and local eigenvectors, making one forward pass with
fewer local eigenvectors. Yang et al. [26] proposed a single-stage image retrieval method
to fuse local information and global information to form the final image descriptor. But in
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these methods, if the local features cannot learn effective information, this seriously affects
the retrieval results after re-ranking.

3 Method
In this section, we introduce our proposed IRM2R. An overview of IRM2R is shown in Fig,1.
Firstly, the feature extraction module M composed of two different image retrieval models
Mα and model Mβ extracts high-dimensional features from the test set images X = {Xi}n

i=1,
and converts them into hash codes through ITQ [8]. Secondly, using Hamming distance and
Euclidean distance, the query image gets two sets of results: α = {αi}S1

i=1 and β = {β j}S2
j=1.

Finally, the re-ranking rules use the information of α and β to adjust α to get the final
retrieval results.

Figure 1: The network architecture of the proposed IRM2R. Features from each image
are fed into two models to obtain the hash code. Then, the query image first calculates the
Hamming distance and then calculates the Euclidean distance to obtain two retrieval result
sets. Finally, the final retrieval results is obtained by adjusting one of the retrieval result sets
by using the information of the two retrieval result sets through the re-ranking rules.

3.1 Two Models Extraction Hash Code Module
Inspired by the two-model network, we choose two trained models Mα and Mβ with different
methods to build the feature extraction module M. The feature extraction module M, which
takes the test image X = {xi}n

i=1 as the input, is used to extract two feature matrix Fα ∈
Rn×d and Fβ ∈ Rn×h. First, through PCA [1] for Fα and Fβ , and then ITQ [8] tries to
minimize quantization error their quantization errors, to obtain the optimal binary matrix
Bα = {bi}n

i=1 ∈ {−1,1}c×n and Bβ = {b j}n
j=1 ∈ {−1,1}c×n, where bi and b j are the binary

code associated with query image xi, and c is the code length. We define the hash function
: X −→ B to generate the hash code as follows:

B = sign(FWcQ) = sign(v)(k = 1, · · · ,c) (1)

where B is a binary hash matrix of either Bα or Bβ , F is the feature matrix Fα or Fβ for
extracting the image from M, Wc is coefficient matrix of PCA, Q is a orthogonal matrix.
Then calculate the quantization loss:

min(L(B,Q)) = ∥B−FWcQ∥2
F (2)
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where the ∥ · ∥2
F is the L2-norm. The whole process minimizes Equation 2 by continuously

updating the orthogonal matrix Q, and finally quantify the feature matrix into a binary hash
matrix.

At query time, the query image xi fed into the two models Mα and Mβ to compute two
different feature vectors, which are converted into two hash codes Bαi and Bβi by ITQ pro-
cessing. Then, We obtain two retrieval results by calculating the distance between different
values of the hash code of the same number of digits. The Hamming distance function is as
follows:

dH(bx,bi) =
c

∑
j=1

(b j
x ⊕b j

i ), (3)

where bx is the hash code converted from the feature vector obtained after the query im-
age xi is processed by Mα or Mβ , bi indicates that the image in the gallery matches the
hash code. Then, we take the top K results with the smallest equation 3 and compute
their Euclidean distance from the query image to get two retrieval results: α = {αi}S1

i=1 and
β = {β j}S2

j=1, representing the retrieval results of model Mα and model Mβ for query image

xi, αi = {ρ i
α ,σ

i
α ,τ

i
α}

S1
i=1 and β j = {ρ

j
β
,σ j

β
,τ j

β
}S2

j=1 consist of a triple: the Euclidean distance
between the candidate image and the query image ρ , the class of the candidate image σ , and
the id of the candidate image τ , the values of i and j indicate the degree of similarity.

At evaluation time, all the images in the test set are converted into hash codes, and each
image can retrieve corresponding similar images. To evaluate the retrieval performance, we
remove the images with the same id as the query image xi from the retrieval results to form
the final retrieval results of each model for the query image xi.

3.2 Re-ranking Rules Module

At the re-ranking time, only the information of the query image xi is unknown, and the
information of other images is known. After the above process, α and β have been able
to fully represent the retrieval results of Mα and Mβ for xi, so the re-ranking rules module
aims to find accurate retrieval information by retrieving high-precision retrieval results in the
result sets α and β . We think there are three instances of high-accuracy retrieval results:
the class of the first candidate image for both models is the same, the top K of either model
has a large number of images of the same class, and both models have the same candidate
image. As shown in Figure 2, when instance 1 or instance 2 is satisfied, we obtain a class
information l, and when instance 3 is satisfied, we obtain a position information I. The
final search result is obtained by adjusting ρ i

α with these information, and then re-ranking α

according to the value of ρ i
α .

Instance 1: the class of the first candidate image for both models is the same. At
present, the recall rate R@1 of the classic image retrieval model for these four datasets can
reach at least 70%, so it is the same as the class for the first candidate image, indicating that
the accuracy of this class lα β is very high. Thus we define f1 to determine whether this
situation is true. f1 can be formulated as:

lαβ = f1(α,β ) =

{
σ1

β
, i f σ1

α == σ1
β

0, otherwise
, (4)
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Figure 2: The re-ranking rules module used in our method. The module consists of 3
instances.

where σ1
α , σ1

β
refer to the class of Mα and Mβ for the first candidate image of query image

xi, So when lαβ is not 0, it means the class of the first candidate image of the two models
If lαβ is not 0, the instance 1 is established. We use information of lαβ to adjust retrieval

result sets α . Specifically, it increases the priority of the retrieval results in the same category
as lαβ in Mα . This is done by first comparing σ i

α with lαβ of candidate images traversing α ,
and changing ρ i

α according to the result of the comparison. This process can be defined as:

F1(α, lαβ ) =

{
ρ i

α −λ1, i f σ i
α == lαβ

ρ i
α +λ1, otherwise

(i = 1,2, · · · ,S1), (5)

where λ1 is an adjust the distance parameter, ρ i
α is the Euclidean distance between the can-

didate image αi and the query image xi.
instance 2: the top K of either model has a large number of images of the same

class. Suppose lβ , Lβ refer to the class with the most top K candidate images of Mβ and its
corresponding number. When there are enough lβ , it means that the retrieval results of Mβ

for xi are relatively consistent, and the retrieval results have high reliability. on the contrary,
it means that the class of the top K retrieval results of Mβ are not uniform, and the reliability
of the retrieval results is low. Thus we define f2 to determine whether this situation is true.
f2 can be formulated as:

lβ = f2(α,β ) =

{
lβ , i f Lβ ≥ R
0, otherwise

, (6)

where R is an adjust the distance parameter, lβ ̸= 0 denote instance 2 is true. it means that
the number of top K of the same class in the retrieval results of Mβ to xi is greater than that
of R.
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If lβ ̸= 0, the instance 2 is established. We use information of lβ to adjust retrieval result
sets α . Specifically, increase the priority of the retrieval results in Mα and lβ of the same
class. This is done by first comparing σ i

α with lβ of candidate images traversing α , and
changing ρ i

α according to the result of the comparison. This process can be defined as:

F2(α, lβ ) =

{
ρ i

α −λ2, i f σ i
α == lβ

ρ i
α , otherwise

(i = 1,2, · · · ,S1), (7)

where λ2 is an adjust the distance parameter.
instance 3: both models have the same candidate image. If a result of Equation 4 or

Equation 6 returns 0, it means that the retrieval results of Mα and Mβ for xi are not uniform.
We aim to improve the priority of the same candidate images of the same Mα and Mβ . The
location information indicates how similar xi is, so the location information must be carefully
considered. At each traversal of β , β j with the same image id as the candidate image αi is
computed the position information Ii. At the same time, in order to reduce the priority of
inconsistent candidate images, we record Ii as a negative value for every 8 images that do not
have the same candidate image. This process can be defined as:

Ii = f3(α,β ) =

{
j, i f τ i

α == τ
j

β

−⌊ 8
j ⌋, otherwise

(i = 1, · · · ,S1),( j = 1, · · · ,S2), (8)

when Ii > 0, it means that the same image id of the i− th candidate image retrieved by α and
the j− th candidate image retrieved by β . On the contrary, Ii means that no candidate image
with the same image id as αi is found in {β j}Ii×8

j=1 .
Calculated by Equation 8, Ii can represent the position information of each αi in β . Then

adjust the priority of the corresponding αi according to Ii. This process can be defined as:

F3(α, Ii) =

{
ρ i

α −λ3(1− Ii
S2
), i f Ii > 0

ρ i
α −λ3 × Ii, otherwise

(i = 1,2, · · · ,S1), (9)

where λ3, λ4 are an adjust the distance parameter.
Finally, retrieval results for xi can be obtained by re-ranking α against ρ i

α .

4 Experimental Results

4.1 Implementation Details
Model selection and parameter setting. Our criteria for selecting models focus on the high
accuracy of the model itself and the difference between the models, ensuring the accuracy of
the model as much as possible, and at the same time, it is hoped that the concerns of the two
models are as different as possible. We choose CGD [10] and ProxyNAC++ [23] to build the
feature extraction module M. Both models are pre-trained on Resnet50 [9] using the common
ImageNet [20] and are ranked top for retrieval accuracy on the four datasets. CGD represents
an image by combining multiple pooling techniques to generate multiple global descriptors.
ProxyNAC++ solves the small gradient problem of proxy by proposing a fast-moving proxy
component based on Proxy-NCA [15]. The role of the proxy is to handle the relationship
between the data in a batch. Therefore, the two models have different concerns, which may

Citation
Citation
{Jun, Ko, Kim, Kim, and Kim} 2019

Citation
Citation
{Teh, DeVries, and Taylor} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Movshovitz-Attias, Toshev, Leung, Ioffe, and Singh} 2017



D.ZHANG, G.GUO, H.WANG: IRM2R 7

lead to different understandings of image recognition. In all of our experiments, The image
features are extracted by ProxyNAC++ to generate a 2048-dimensional vector. CGD selects
three global descriptions to represent image features to generate a 1536-dimensional vector.
In addition, we keep the original CGD and ProxyNAC++ parameter settings and only use
the training data set to optimize hyperparameters.

Datasets and Evaluation metric. Four image datasets are used to evaluate our approach:
the Caltech-UCSD Birds (Cub200) [25], the Stanford Cars (Cars196) [11], the Stanford On-
line Products (Sop) [17], and the In Shop Clothing Retrieval (InShop) [13]. Table 1 shows an
overview of each dataset’s makeup in terms of the number of images and classes. Caltech-
UCSD Birds is developed for images image classification and image retrieval. It contains
a total of 11,788 bird images and 200 classes. The first 100 classes are used to train the
model and the last 100 classes are used to evaluate the model. There are approximately 60
images in each class. Stanford Cars contains a total of 16185 different types of cars and
196 classes. The first 98 classes are used to train the model and the last 98 classes are used
to evaluate the model. There are approximately 80 images in each class. Stanford Online
Products is developed for images image classification and image retrieval. It has 22,634
classes with 120,053 product images. The first 11,318 classes (59,551 images) are split for
training and the other 11,316 (60,502 images) classes are used for testing. There are ap-
proximately 10 images in each class. In-shop Clothes Retrieval evaluates the performance
of in-shop Clothes Retrieval. It contains a total of 7,982 clothing items and 52,712 in-shop
clothes images, and the number of instances per class is very low for InShop datasets. There
are approximately 7-8 images in each class. It is different from other datasets in that this
dataset divides the data into three parts: training images, query images, and gallery images.
Using the same evaluation protocols detailed in [cgd, ProxyNCA++]. To evaluate our model,
we evaluate retrieval performance based on Recall@K, R@k = 1

n ∑
n
i=1(scorei) if the query

image has at least one of the same class as the first k images returned, then scorei = 1,
otherwise scorei = 0.

Table 1: The composition of all four image retrieval datasets. The number of classes
for the Sop and InShop datasets is large when compared to CUB200 and Cars196 datasetr.
However, the number of instances per class is very low for the Sop and InShop datasets.
resulting in few correct answers in the gallery, which will affect the re-ranking retrieval
results.

dataset name images classes train test gallery correct answers
Cub200 11788 200 5864 5924 50-60
Cars196 16185 196 8054 8131 70-80

Sop 120053 22634 59551 60502 5-6
InShop 52712 11967 20052 126123 2-3

4.2 Result
4.2.1 Comparison with CGD and ProxyNCA++

Tables 2 and 3 show a comparison between the results of CGD and ProxyNCA++ on Cub200,
Cars196, Sop, and InShop. Compared with CGD and ProxyNCA++, Our IRM2R improved
by 3.8%, 2.3%, 2.2%, and 0.5% on R@1, and our proposed re-ranking rules module exhibits
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superior performance without the training model. Because of the nature of the re-ranking
rules module, The performance improvement of the proposed model is not obvious in In-
Shop. We think that the re-rank rule module utilizes a lot of wrong information because the
query image has fewer numbers of the same class as the image in the gallery.

Table 2: Recall@k (%) on Cub200 and Cars196

datasets Cub200 Cars196
R@k 1 2 4 8 1 2 4 8

ProxyNCA++ 72.8 82.6 89.2 93.5 88.8 93.7 96.6 98.2
CGD 76.8 84.8 90.6 94.3 92.5 96.1 97.8 98.6

IRM2M 80.6 85.9 90.9 94.5 94.8 96.9 98.1 98.8

Table 3: Recall@k (%) on Sop and InShop

datasets Sop InShop
R@k 1 10 100 1000 1 10 20 30

ProxyNCA++ 81.2 92.2 96.8 98.9 90.4 98.1 98.8 99.2
CGD 79.3 90.6 95.8 98.6 83.6 95.7 97.1 98.1

IRM2M 83.4 92.8 96.8 98.7 90.9 98.0 98.8 99.1

Table 4: Ablation study for re-ranking rules, Comparison of three instances in re-ranking
rules, trained separately, with different instances. We report R@k results of images retrieval
performance from the Caltech-UCSD Birds datasets (Cub200).

instance 1 instance 2 instance 3 R@1 R@2 R@4 R@8
0 0 0 76.8 84.8 90.6 94.3
1 1 1 80.6 85.9 90.9 94.8
1 1 0 77.4 84.7 89.6 93.3
1 0 1 79.0 86.3 91.6 95.0
0 1 1 79.5 86.2 91.5 94.8

Table 5: Count the number and accuracy of two retrieval result sets that satisfy instance
1 and instance 2. When the two retrieval result sets satisfy instance 1 or instance 2, we get
a class to compare with the class of the query image, and count the correct rate and quantity.

instance images re-ranking images correct images accuracy
1 5924 4053 3762 92.8
2 5924 4305 3964 92.1

4.2.2 Ablation Studies

We show the impact of the re-ranking rules module on the retrieval performance of the
Cub200 dataset in Table 4. We cancel either instances in the re-ranking rules and opti-
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mize the parameters on the training dataset, and then evaluate the retrieval performance.
re-ranking improves retrieval performance, especially when all three instances are applied.

4.2.3 Verify the accuracy of the re-ranking rules in three instances

We count the number of correct retrievals in the Cub200 retrieval results that satisfy the first
two instances (The class of the first candidate image for both models is the same and the top
K of any model has a large number of images of the same class) to verify the effectiveness of
IRM2R. As shown in table 5. Satisfy instance 1 or instance 2 to obtain the class for re-ranking
with an accuracy of more than 92.0%, and the number also reaches a considerable amount.
After the adjustment of the re-ranking rules, when the candidate image of the retrieval results
is the same as this class, its priority will be increased, which is in line with the user’s query
habit that the correct answer comes first. As shown in Figures 3(a) and 3(b), we visualize
the re-retrieval results, even though the initial retrieval result sets of the two models are quite
different, the retrieval results after the re-ranking rules are still good. The application of
instance 3 is shown in Figure 3(c), the initial retrieval results of the two models are quite
different and do not satisfy instances 1 and 2, but still achieve good results after re-ranking.

(a)

(b)

(c)

Figure 3: Demonstrates the top 8 retrieval results of CGD, ProxyNAC++, and IRM2R
in Cub200. Results of CGD, ProxyNCA, and our IRM2R are shown from top to bottom. No
boxes and red boxes denote positive and negative images, respectively.
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5 Conclusion
In this paper, we propose a novel re-rank method based on two models (IRM2R) to fuse the
retrieval results of two models effectively. The IRM2R introduces re-ranking rules to extract
the correct part of the two retrieval result sets as much as possible to effectively improve
retrieval performance. On the four datasets of Cub200, Cars196, Sop, and InShop, extensive
experiments show our IRM2R surpasses the best results CGD and ProxyNAC++ by 3.8%,
2.3%, 2.2%, and 0.5%.
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