Multi-View Neural Surface Reconstruction with Structured Light


Chunyu Li ( Preferred Networks, Inc.),* Taisuke Hashimoto (Preferred Networks, Inc.), Eiichi Matsumoto (Preferred Networks, Inc.), Hiroharu Kato (Preferred Networks)
The 33rd British Machine Vision Conference

Abstract

Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision. DR-based methods minimize the difference between the rendered and target images by optimizing both the shape and appearance and realizing a high visual reproductivity. However, most approaches perform poorly for textureless objects because of the geometrical ambiguity, which means that multiple shapes can have the same rendered result in such objects. To overcome this problem, we introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses. More specifically, our framework leverages the correspondences between pixels in different views calculated by structured light as an additional constraint in the DR-based optimization of implicit surface, color representations, and camera poses. Because camera poses can be optimized simultaneously, our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration, which is required for conventional SL-based methods. Experiment results on both synthetic and real data demonstrate that our system outperforms conventional DR- and SL-based methods in a high-quality surface reconstruction, particularly for challenging objects with textureless or shiny surfaces.

Video



Citation

@inproceedings{Li_2022_BMVC,
author    = {Chunyu Li and Taisuke Hashimoto and Eiichi Matsumoto and Hiroharu Kato},
title     = {Multi-View Neural Surface Reconstruction with Structured Light},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year      = {2022},
url       = {https://bmvc2022.mpi-inf.mpg.de/0550.pdf}
}


Copyright © 2022 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection