Spatio-temporal tendency reasoning for human body pose and shape estimation from videos


Boyang Zhang (Ningxia University), Suping Wu (Ningxia University),* Hu Cao (Ningxia University), Kehua Ma (Ningxia University), Pan Li (NingXia University), Lei Lin (Ningxia universiry)
The 33rd British Machine Vision Conference

Abstract

In this paper, we present a spatio-temporal tendency reasoning (STR) network for recovering human body pose and shape from videos. Previous approaches have focused on how to extend 3D human datasets and temporal-based learning to promote accuracy and temporal smoothing. Different from them, our STR aims to learn accurate and natural motion sequences in an unconstrained environment through temporal and spatial tendency and to fully excavate the spatio-temporal features of existing video data. To this end, our STR learns the representation of features in the temporal and spatial dimensions respectively, to concentrate on a more robust representation of spatio-temporal features. More specifically, for efficient temporal modeling, we first propose a temporal tendency reasoning (TTR) module. TTR constructs a time-dimensional hierarchical residual connection representation within a video sequence to effectively reason temporal sequences' tendencies and retain effective dissemination of human information. Meanwhile, for enhancing the spatial representation, we design a spatial tendency enhancing (STE) module to further learns to excite spatially time-frequency domain sensitive features in human motion information representations. Finally, we introduce integration strategies to integrate and refine the spatio-temporal feature representations. Extensive experimental findings on large-scale publically available datasets reveal that our STR remains competitive with the state-of-the-art on three datasets. Our code are available at https://github.com/Changboyang/STR.git.

Video



Citation

@inproceedings{Zhang_2022_BMVC,
author    = {Boyang Zhang and Suping Wu  and Hu Cao and Kehua Ma and Pan Li and Lei Lin},
title     = {Spatio-temporal tendency reasoning  for human body pose and shape estimation from videos},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year      = {2022},
url       = {https://bmvc2022.mpi-inf.mpg.de/0719.pdf}
}


Copyright © 2022 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection