Structured Spatial Reasoning for Human Pose Estimation


YING HUANG (Hangzhou Normal University),* Shanfeng Hu (Northumbria University), zike zhang (Hangzhou Normal University)
The 33rd British Machine Vision Conference

Abstract

Human pose estimation from single images has made significant progress in the past but still faces fundamental challenges from the occlusion and overlapping of joints in many cases. This is partly due to the limitation of the traditional paradigm for this problem, which attempts to locate human body joints solely and as a result can fail to resolve the spatial connections among joints that are critical for the identification of the whole pose. To overcome this shortcoming, we propose to explicitly incorporate spatial reasoning into pose estimation by formulating it as a structured graph learning problem, in which each image pixel is a candidate graph node with every two nodes connected via an edge that captures their affinity. The advantage of this representation is that it allows us to learn feature embeddings for both the nodes and edges, thereby providing a sufficient capacity to delineate correct human body joints and their connecting bones. To facilitate efficient learning and inference, we exploit self-attention transformer architectures that fuse node and edge learning pathways, which can save parameter numbers and permit fast computation. Experiments on the popular MS-COCO Human pose estimation benchmark show that our method outperforms representative methods.

Video



Citation

@inproceedings{HUANG_2022_BMVC,
author    = {YING HUANG and Shanfeng Hu and zike zhang},
title     = {Structured Spatial Reasoning for Human Pose Estimation},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year      = {2022},
url       = {https://bmvc2022.mpi-inf.mpg.de/0797.pdf}
}


Copyright © 2022 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection