SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise

Chen Feng (Queen Mary University of London),* Georgios Tzimiropoulos (Queen Mary University of London), Ioannis Patras (Queen Mary University of London)
The 33rd British Machine Vision Conference


Despite the large progress in supervised learning with neural networks, there are significant challenges in obtaining high-quality, large-scale and accurately labelled datasets. In such a context, how to learn in the presence of noisy labels has received more and more attention. As a relatively complex problem, in order to achieve good results, current approaches often integrate components from several fields, such as supervised learning, semi-supervised learning, transfer learning and resulting in complicated methods. Furthermore, they often make multiple assumptions about the type of noise of the data. This affects the model robustness and limits its performance under different noise conditions. In this paper, we consider a novel problem setting, Learning with Unknown Label Noise}(LULN), that is, learning when both the degree and the type of noise are unknown. Under this setting, unlike previous methods that often introduce multiple assumptions and lead to complex solutions, we propose a simple, efficient and robust framework named Sample Selection and Relabelling(SSR), that with a minimal number of hyperparameters achieves SOTA results in various conditions. At the heart of our method is a sample selection and relabelling mechanism based on a non-parametric KNN classifier~(NPK) $g_q$ and a parametric model classifier~(PMC) $g_p$, respectively, to select the clean samples and gradually relabel the noisy samples. Without bells and whistles, such as model co-training, self-supervised pre-training and semi-supervised learning, and with robustness concerning the settings of its few hyper-parameters, our method significantly surpasses previous methods on both CIFAR10/CIFAR100 with synthetic noise and real-world noisy datasets such as WebVision, Clothing1M and ANIMAL-10N. Code is available at



author    = {Chen Feng and Georgios Tzimiropoulos and Ioannis Patras},
title     = {SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year      = {2022},
url       = {}

Copyright © 2022 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection